
From sequence data to 
genomic prediction 

 



Course overview 

• Day 1 
– Introduction  

– Generation, quality control, alignment of sequence data 

– Detection of variants, quality control and filtering 

• Day 2 
– Imputation from SNP array genotypes to sequence data 

• Day 3 
– Genome wide association studies with SNP array and 

sequence variant genotypes 

• Day 4 & 5 
– Genomic prediction with SNP array and sequence variant 

genotypes (BLUP and Bayesian methods) 

– Use of genomic selection in breeding programs 

 



• Introduction to genomic selection 

 

• Genomic prediction with BLUP 

 

• Genomic prediction with Bayesian methods 

 

• Examples in real data 

Genomic prediction 



Genomic prediction 

• Problem marker assisted selection is 

only a proportion of genetic variance 

is tracked with markers 

– Eg. 10 QTL << 5% of the genetic variance 

• Alternative is to trace all segments of 
the genome with markers 

– Divide genome into chromosome 

segments based on marker intervals? 

– Capture all QTL = all genetic variance   



Genomic selection 
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• Predict genomic breeding values as 
sum of effects over all SNP 
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• Predict genomic breeding values as 
sum of effects over all SNP 
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• Genomic prediction exploits linkage 

disequilibrium 

– Assumption is that markers picking up 
QTL and will have same effect across the 

whole population   

• Possible within dense marker maps now 

available 

Genomic prediction 



• Genomic prediction avoids bias in 

estimation of effects due to multiple 

testing, as all effects fitted 
simultaneously  

Genomic prediction 



Genomic selection 



• First step is to predict the 
chromosome segment effects in a 
reference population 

• Number of effects >>> than number 
of records 

• Eg. 50,000 SNPs 

• From ~ 2000 records? 

• Need methods that can deal with this  

Genomic prediction 



Genomic prediction 

• BLUP = best linear unbiased prediction 

• Model: 

 

 

 

• In BLUP we assume SNP effects come from 

normal distribution with same variance          
E(g) ~ N(0,g

2) 
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Genomic prediction with BLUP 

• BLUP assumes normal distribution of SNP  
effects 
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• BLUP = best linear unbiased prediction 

• Then we can estimate segment effects as: 
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Genomic prediction with BLUP 



• Example 

• A “simulated” data set 

• Single chromosome, with 10 markers 

• Phenotypes “simulated”  

– overall mean of 1 

– an effect for SNP 1 of 2 allele of 1 

– normally distributed error term with mean 0 and variance 
1.   

 

 

Genomic prediction with BLUP 



• Example 

 

 

 

 

 

 

 

• 10 SNPs 

• Only 5 phenotypic records.  
 

 

X 

Animal Y 1 2 3 4 5 6 7 8 9 10 

1 0.19 0 0 0 0 0 0 1 2 0 2 

2 1.23 1 0 0 1 1 1 2 1 0 1 

3 0.86 1 0 0 1 0 0 1 1 1 1 

4 1.23 1 1 1 1 0 1 2 1 1 1 

5 0.45 0 1 1 1 1 1 2 1 0 1 

Genomic prediction with BLUP 



• Example 

 

 

 

• Assume value of 1 for  

• 1n = [1 1 1 1 1] 
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Genomic prediction with BLUP 



• Example 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Mean 0.47 

SNP1 0.29 

SNP2 -0.05 

SNP3 -0.05 

SNP4 0.08 

SNP5 -0.02 

SNP6 0.13 

SNP7 0.13 

SNP8 -0.08 

SNP9 0.11 

SNP10 -0.08 

Genomic prediction with BLUP 



• Now we want to predict GEBV for a group of 
young animals without phenotypes. 

 

 

 

• We have the g_hat, and we can get X from their 

haplotypes (after genotyping)………… 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 gXGEBV

Progeny X 

1 1 1 1 1 1 1 2 1 0 1 

2 1 0 0 1 1 1 2 1 0 1 

3 1 0 0 1 1 1 2 1 0 1 

4 1 0 0 1 1 1 2 1 0 1 

5 0 0 0 0 0 0 1 2 0 2 

Genomic prediction with BLUP 



• GEBV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 gXGEBV

     X                                              GEBV 



g

1 1 1 1 1 1 2 1 0 1 0.29 0.47 
1 0 0 1 1 1 2 1 0 1 -0.05 0.58 
1 0 0 1 1 1 2 1 0 1 -0.05 0.58 
1 0 0 1 1 1 2 1 0 1 0.08 0.58 
0 0 0 0 0 0 1 2 0 2 -0.02 -0.20 

0.13 
0.13 

-0.08 
0.11 

-0.08 

Genomic prediction with BLUP 



• Where do we get g
2 from? 

• Can estimate total additive genetic 
variance and divide by number of 
segments, eg g

2 = a
2 /p 

• If using single markers take account of 
heterozygosity 

 

 

 
• Ridge regression (Bayesian approach) 

• Cross validation 
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• An equivalent model 

• If there are many QTLs whose effects are normally 
distributed with constant variance,  

• Then genomic selection equivalent to replacing the 

expected relationship matrix with the realised or 
genomic relationship matrix (G) estimated from 

DNA markers in normal BLUP equations.  
– Gij = proportion of genome that is IBD between animals i 

and j 

 

Genomic prediction with BLUP 



• An equivalent model 

• Rescale X to account for allele frequencies 

–wij = xij – 2pj 

 

• Then breeding values are 

– v = Wg     (             ) 

• And 

 

 

 

• Then   
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Genomic prediction with BLUP 



• An equivalent model 
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Genomic prediction with BLUP 



• An equivalent model 

–Model 1.  

 

 

 

–Model 2.  
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Genomic prediction with BLUP 



• An equivalent model 

–Model 1.  

 

 

 

–Model 2.  
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Genomic prediction with BLUP 



Holstein reference     n = 781 

 

 

 

Jersey reference       n = 287 

 

 

Holstein validation    n = 400 

 

Jersey validation      n = 77  



• An equivalent model 

• Why use model 2 (GBLUP). 
– If number of markers >>> large than number 

of animals, more computationally efficient 

– Can be integrated into national evaluations 
more readily?  

– Calculate accuracy of GEBV from inverse 
coefficient matrix 

 

Genomic prediction with BLUP 



Genomic selection 



• Introduction to genomic selection 

 

• Genomic prediction with BLUP 

 

• Genomic prediction with Bayesian methods 

 

• Examples in real data 

Genomic prediction 



• Alternative assumptions regarding the 
distribution of SNP effects 

• Introduction to Bayesian methods 

• Genomic prediction with Bayesian methods 

• Comparison of accuracy of methods 

Genomic prediction 



Genomic selection 



Alternative prior assumptions for SNP effects 

• BLUP assumes normally 
distributed QTL effects 

• Does not match prior 

knowledge of 
distributions of QTL 
effects for some traits 
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Alternative prior assumptions for SNP effects 

• Students t distribution? 

– BayesA 

• Many zero effects and proportion Students t 

distribution? 

– BayesB 

• Many zero effect and rest normal distribution 

– BayesCpi 

• Double exponential effects 

– BayesianLASSO 

• Multiple normal distributions 

– BayesMulti, BayesR 

 

 

 



Bayesian methods 
• Bayes theorem 
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• Bayes theorem 
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data) 



Bayesian methods 
• Bayes theorem 
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Probability of 

parameters x given 

the data y (posterior) 

Is proportional to Probability of 

data y given the 

x (likelihood of 

data) 

Prior 
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Bayesian methods 

• Consider an experiment where we measure height 
of 10 people to estimate average height 

• We want to use prior knowledge from many 

previous studies that average height is 174cm 
with standard error 5cm 

y=average height + e 



Bayesian methods 
• Bayes theorem 
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Bayesian methods 
• Bayes theorem 
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Bayesian methods 
• Bayes theorem 
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Prior probability of x (average height) 
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Bayesian methods 
• Bayes theorem 
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Bayesian methods 
• Bayes theorem 

• Less certainty about prior information? Use less informative (flat) 
prior 
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Bayesian methods 
• Bayes theorem 

• Less certainty about prior information? Use less informative (flat) 
prior 
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Bayesian methods 
• Bayes theorem 

• More certainty about prior information? Use more informative prior 
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Bayesian methods 
• Bayes theorem 

• More certainty about prior information? Use more informative prior 
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Genomic prediction 

• Alternative assumptions regarding the 
distribution of SNP effects 

• Introduction to Bayesian methods 

• Genomic prediction with Bayesian methods 

• Comparison of accuracy of methods 



Genomic selection 

• For some traits 
prior 
knowledge 
suggests t-
distribution of 
effects 

• How to 
incorporate this 
into our 
predictions? 
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Genomic selection 

• The t distribution 
can be presented 
as a two level 
hierarchical model 

• Allow different 
variances between 
chromosome 
segments 

• Assume a 
distribution of 
these variances 

• Computationally 
easier to deal with 
than original form 
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Bayesian methods 

• Now lets allow different variances of 

chromosome segment effects 
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Bayesian methods 

• Now lets allow different variances of 

chromosome segment effects 

• Need two levels of models 

– Data 

 

 

 

– Variances of chromosome segment effects 
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Bayesian methods 

• Now lets allow different variances of 

chromosome segment effects 

• Data 
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Bayesian methods 

• Variances of chromosome segments 

 

 

 

• Note that these variance components are 

not the parameters of interest 

• However they are useful intermediates to 
arrive at better inferences for the gi 

• Amount of shrinkage of effects varies 

between segments 
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Bayesian methods 

• Variances of chromosome segments 

 

 

 

• Prior? 

– Inverted chi square convenient for variances 
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Bayesian methods 

• Prior? 
– Inverted chi square convenient for variances 
– An inverted chi square with v degrees of freedom 

and scaled by S2, eg.  
 

 
 

– Describes a distribution with  
• mean  

 
 

• variance  

 
– Larger v, more informative prior = more belief 

about variance 
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Bayesian methods 

v=2 



Bayesian methods 

v=2 

v=20 



Bayesian methods 

• Variances of chromosome segments 

 

 

 

• Prior? 

 

 

• We can choose v and S2 so that the prior 

reflects our knowledge that there are many 

QTL of small effect and few of large effect 
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Bayesian methods 
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Bayesian methods 

• Variances of chromosome segments 

 

 

 

• Posterior? 

– An advantage of choosing the inverse chi-square 

distribution for the prior is that the posterior will 
also be an inverse chi-square distribution 

• Degrees of freedom = prior + data 

• Scaling factor = sums of squares prior (S2) + sums of 
squares from data 
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Bayesian methods 

• Variances of chromosome segments 

 

 

 

• Posterior? 

– ni = number of haplotype effects 
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Bayesian methods 

• Variances of chromosome segments 

 

 

 

• Posterior? 

 

 

 

• But posterior cannot be estimated directly, 

dependent on gi!! 

 

 

 

 

 

 

 

 

2

)002.0,012.4(



 ii g'gin

)()|()|( 222

gigigi PPP  ii gg 



Bayesian methods 

• Solution is to use Gibbs sampling 

– Draw samples from the posterior distributions of 

parameters conditional on all other effects 

– The average of these samples can be used as the 
estimates of the parameters 

 

 

 

 

 

 

 

 



Bayesian methods 

• Gibbs sampling scheme 

–Parameters to estimate and their posteriors 

 

–P(gi
2|gi) 

 

 

–P(e
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Bayesian methods 

• Gibbs sampling scheme 

–Parameters to estimate and their posteriors 

 

–P(gi
2|gi) 

 

 

–P(e
2|e) 

 

 

–P(|y,e,g, e
2) 

 

–P(gij|y,,g≠ij,gi
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g, eg. g=0.01 

and , eg =0.01 

–Step 2.  For each i, draw from P(gi
2|gi) 
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g, eg. g=0.01 

and , eg =0.01 

–Step 2.  For each i, draw from P(gi
2|gi) 

 

 

 

 

 

• g1
2=0.95 
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g, eg. g=0.01 

and , eg =0.01 

–Step 2.  For each i, draw from P(gi
2|gi) 

–Step 3.  Draw a sample from P(e
2|e)   

First calculate the e as  
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g, eg. g=0.01 

and , eg =0.01 

–Step 2.  For each i, draw from P(gi
2|gi) 

–Step 3.  Draw a sample from P(e
2|e)   

First calculate the e as 

 

 

–Then sample…  
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g, eg. g=0.01 

and , eg =0.01 

–Step 2.  For each i, draw from P(gi
2|gi) 

–Step 3.  Draw a sample from P(e
2|e)   

First calculate the e as 

 

 

–Then sample… 
 

 

– e
2 = 0.5 
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g, eg. g=0.01 

and , eg =0.01 

–Step 2.  For each i, draw from P(gi
2|gi) 

–Step 3.  Draw a sample from P(e
2|e) 

–Step 4.  Draw a sample from P(|y,g,e
2)  



Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g, eg. g=0.01 

and , eg =0.01 

–Step 2.  For each i, draw from P(gi
2|gi) 

–Step 3.  Draw a sample from P(e
2|e) 

–Step 4.  Draw a sample from P(|y,g,e
2) 

 

 
– =-0.1  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

mean

d
e
n

s
it

y

  







 n

n
N e /,

1 2Xg1y1 '

n

'

n



Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g, eg. g=0.01 

and , eg =0.01 

–Step 2.  For each i, draw from P(gi
2|gi) 

–Step 3.  Draw a sample from P(e
2|e) 

–Step 4.  Draw a sample from P(|y,g,e
2) 

–Step 5.  For each gij, draw from 

P(gij|y,,g,gi
2,e

2) 

 
– g11 = 0.5 
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Bayesian methods 

• The Gibbs chain 

–Repeat steps 2-5 many times to build up 

samples from posterior distributions of the 

parameters 

 

 

 



Bayesian methods 

• The Gibbs chain 

–Repeat steps 2-5 many times to build up 

samples from posterior distributions of the 

parameters 

– Finally, take estimates of parameters as 
average over many cycles 

–Discard first ~ 100 cycles as dependent on 

starting values 

 

 

 



Bayesian methods 

• Example 
– Consider a data set with three markers.  The data 

set was simulated as:  

– the effect of a 2 allele at the first marker is 3, the 
effect of a 2 allele at the second marker is 0, and 
the effect of a 2 allele at the third marker was -2. 

– the  was 3  

– e
2 was 0.23.  The data set was: 

 

 
 



Bayesian methods 

• Example 
 
 

Animal Phenotype Marker1 allele 1 Marker1 allele 2 Marker2 allele 1 Marker 2 allele 2 Marker3 allele 1 Marker 3 allele 2

1 9.68 2 2 2 1 1 1

2 5.69 2 2 2 2 2 2

3 2.29 1 2 2 2 2 2

4 3.42 1 1 2 1 1 1

5 5.92 2 1 1 1 1 1

6 2.82 2 1 2 1 2 2

7 5.07 2 2 2 1 2 2

8 8.92 2 2 2 2 1 1

9 2.4 1 1 2 2 1 2

10 9.01 2 2 2 2 1 1

11 4.24 1 2 1 2 2 1

12 6.35 2 2 1 1 1 2

13 8.92 2 2 1 2 1 1

14 -0.64 1 1 2 2 2 2

15 5.95 2 1 1 1 1 1

16 6.13 1 2 2 1 1 1

17 6.72 2 1 2 1 1 1

18 4.86 1 2 2 1 1 2

19 6.36 2 2 2 2 2 2

20 0.81 1 1 2 1 1 2

21 9.67 2 2 1 2 1 1

22 7.74 2 2 2 1 1 2

23 1.45 1 1 2 2 2 1

24 1.22 1 1 2 1 2 1

25 -0.52 1 1 2 2 2 2



Bayesian methods 

• Example 
– The Bayesian approach was applied, fitting 

single marker effects 

– X matrix 

• Number of copies of two allele for each animal, 
eg. 2 1 0 for animal 1. 

 

 

 

 



Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g,  

• g1=0.01, g2=0.01,g3=0.01, =0.1 

 



Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g,  

• g1=0.01, g2=0.01,g3=0.01, =0.1 

–Step 2.  For i=1,2,3, draw from P(gi
2|gi) 
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g,  

• g1=0.01, g2=0.01,g3=0.01, =0.1 

–Step 2.  For i=1,2,3, draw from P(gi
2|gi) 

 

 

 

• g1
2=0.002, g2

2=0.06, g3
2=0.009 
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g,  

• g1=0.01, g2=0.01,g3=0.01, =0.1 

–Step 2.  For i=1,2,3, draw from P(gi
2|gi) 

• g1
2=0.002, g2

2=0.06, g3
2=0.009 

–Step 3.  Draw a sample from P(e
2|e) 
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g,  

• g1=0.01, g2=0.01,g3=0.01, =0.1 

–Step 2.  For i=1,2,3, draw from P(gi
2|gi) 

• g1
2=0.002, g2

2=0.06, g3
2=0.009 

–Step 3.  Draw a sample from P(e
2|e) 

 

 

 

• e
2= 53.38 
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g,  

• g1=0.01, g2=0.01,g3=0.01, =0.1 

–Step 2.  For i=1,2,3, draw from P(gi
2|gi) 

• g1
2=0.002, g2

2=0.06, g3
2=0.009 

–Step 3.  Draw a sample from P(e
2|e) 

• e
2= 53.38 

–Step 4.  Draw a sample from P(|y,g,e
2) 

 

 

• =3.25  
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g,  

• g1=0.01, g2=0.01,g3=0.01, =0.1 

–Step 2.  For i=1,2,3, draw from P(gi
2|gi) 

• g1
2=0.002, g2

2=0.06, g3
2=0.009 

–Step 3.  Draw a sample from P(e
2|e) 

• e
2= 53.38 

–Step 4.  Draw a sample from P(|y,g,e
2) 

• =3.25 

–Step 5.  Draw a sample from 
P(gij|y,,g≠ij,gi

2,e
2)   
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Bayesian methods 

• The Gibbs chain 

–Step 1.  Initialise value of g,  

• g1=0.01, g2=0.01,g3=0.01, =0.1 

–Step 2.  For i=1,2,3, draw from P(gi
2|gi) 

• g1
2=0.002, g2

2=0.06, g3
2=0.009 

–Step 3.  Draw a sample from P(e
2|e) 

• e
2= 53.38 

–Step 4.  Draw a sample from P(|y,g, e
2,e) 

• =3.25 

–Step 5.  Draw a sample from 
P(gij|y,,g≠ij,gi

2,e
2)  

• g1=-0.02, g2=-0.81,g3=-0.005  



Bayesian methods 

• Gibbs chain for 1000 cycles 

 

 

 

– P(g1|y,,g≠1,g1
2,e

2) 

 



Bayesian methods 

• Gibbs chain for 1000 cycles 

 

 

 

– P(g1|y,,g≠1,g1
2,e

2) 

 

“Burn in” 



Bayesian methods 

• Gibbs chain for 1000 cycles 

 

 

 

– P(g1|y,,g≠1,g1
2,e

2) 
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Bayesian methods 

• Gibbs chain for 1000 cycles 
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Bayesian methods 

97.21 


g 002.02 


g 81.11 


g

Vector of SNP effects for calculating GEBV 



Bayesian methods 

• Alternative priors for variance of 
segment haplotype/snp effects 

–Meuwissen BayesA 

 

–Xu (2003) 

• Uninformative 

 

–Ter Braak (2006) 

 

–Meuwissen BayesB 
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Bayesian methods 

• Meuwissen BayesB 
– BayesA prior information is 

many QTL with small effects 
and few with moderate 
effects 

– But we have more prior 
knowledge than this – some 
chromosome segments will 
have no effect at all (contain 
no QTL) 

• gi
2=0,gi =0 

– How to sample from the 
posterior? -15 -10 -5 0 5 10 15 20
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Bayesian methods 

• Meuwissen BayesB 
– If we sample gi

2 from  

–We will never sample 0, as the distribution 
has no mass at zero.   
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Bayesian methods 

• Meuwissen BayesB 
– If we sample gi

2 from  

–We will never sample 0 if gi’gi>0, as the 
distribution has no mass at zero.   

–But if gi
2 >0, then sampling gi = 0 has 

infinitesimal (basically zero) probability 
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Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

*),|(*)|(*)|,( 222 ygpypygp giigiigi  

We want to sample from this Can do it by sampling from these two 

distributions 



Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

*),|(*)|(*)|,( 222 ygpypygp giigiigi  

We want to sample from this P(gi|y,,g,gi
2,e

2) 
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Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

*),|(*)|(*)|,( 222 ygpypygp giigiigi  

?? 

 Sample gi
2 without conditioning on gi 



Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

 

 

 

–Cannot be expressed as a known 

distribution = cannot use Gibbs for this bit 

–Use a Metropolis Hastings algorithm   

*),|(*)|(*)|,( 222 ygpypygp giigiigi  



Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

 

 

 

–Step1 Sample g_new
2,from prior(g_new

2) 
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Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

 

 

 

–Step1 Sample g_new
2,from prior(g_new

2) 

 

– g_new
2=0 
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Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

 

 

 

–Step1 Sample g_new
2,from prior(g_new

2) 

 

– g_new
2=0.5 
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Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

 

 

 

–Step 1 Sample g_new
2,from prior(g_new

2) 

–Step 2 Evaluate p(y*| g_new
2) (Likelihood)  
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Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

 

 

 

–Step 1 Sample g_new
2,from prior(g_new

2) 

–Step 2 Evaluate p(y*| g_new
2) (Likelihood) 

–Step 3 Replace gi
2 with g_new

2 probability                                    

min[p(y*| g_new
2)/ p(y*| gi

2):1]  

*),|(*)|(*)|,( 222 ygpypygp giigiigi  



Bayesian methods 

• Meuwissen BayesB 

–Solution: sample gi
2,gi simultaneously from 

the distribution: 

 

 

 

–Step 1 Sample g_new
2,from prior(g_new

2) 

–Step 2 Evaluate p(y*| g_new
2) (Likelihood) 

–Step 3 Replace gi
2 with g_new

2 probability                                    

min[p(y*| g_new
2)/ p(y*| gi

2):1]  

–Step 4 Repeat ~ 100 cycles  

*),|(*)|(*)|,( 222 ygpypygp giigiigi  



Genomic prediction 

• Comparison of accuracy of methods 
(Meuwissen et al. 2001) 
– Genome of 1000 cM simulated, marker 

spacing of 1 cM.   

– Markers surrounding each 1-cM region  
combined into haplotypes. 

– Due to finite population size (Ne = 100), 
marker haplotypes were in linkage 
disequilibrium with QTL between markers.   

– Effects of haplotypes predicted in one 
generation of 2000 animals 

– Breeding values for progeny of these 
animals predicted based on marker 
genotypes 



Genomic prediction 

• Comparison of accuracy of methods 
(Meuwissen et al. 2001) 

 rTBV;EBV + SE bTBV.EBV + SE 

 

LS 0.318 ± 0.018 0.285 ± 0.024 

BLUP 0.732 ± 0.030 0.896 ± 0.045 

BayesA 0.798 0.827 

BayesB 0.848 + 0.012 0.946 + 0.018 

 



Genomic prediction 

• Comparison of accuracy of methods 
(Meuwissen et al. 2001) 
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.   

 



Genomic prediction 

• Comparison of accuracy of methods 
(Meuwissen et al. 2001) 
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.   

– Increased accuracy of the Bayesian approach 
because method sets many of the effects of 
the chromosome segments close to zero in 
BayesA, or zero in BayesB 



Genomic prediction 

• Comparison of accuracy of methods 
(Meuwissen et al. 2001) 
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.   

– Increased accuracy of the Bayesian approach 
because method sets many of the effects of 
the chromosome segments close to zero in 
BayesA, or zero in BayesB 

– Also “shrinks” estimates of effects of other 
chromosome segments based on a prior 
distribution of QTL effects.  



Genomic prediction 

• Comparison of accuracy of methods 
(Meuwissen et al. 2001) 
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.   

– Increased accuracy of the Bayesian approach 
because method sets many of the effects of 
the chromosome segments close to zero in 
BayesA, or zero in BayesB 

– Also “shrinks” estimates of effects of other 
chromosome segments based on a prior 
distribution of QTL effects.  

– Accuracies were very high, as high as 
following progeny testing for example 



• Introduction to genomic selection 

 

• Genomic prediction with BLUP 

 

• Genomic prediction with Bayesian methods 

 

• Examples in real data 

Genomic prediction 



In real data    

• 1500 Australian dairy 

bulls 

• genotyped for 56000 

genome wide SNPs 

• Phenotypes average 

of daughters milk 

production 



• Split data into two sub-populations 

– Reference:  Bulls born < 2003 

– Validation: Bulls born >= 2003 

 

 

 

In real data    



• Split data into two sub-populations 

– Reference:  Bulls born < 2003 

– Validation: Bulls born >= 2003 

• Accuracy 

– Correlation of genomic breeding values with 
EBVs (which include daughter information) in 

validation set 

 

 

In real data    



In real data    
Table 3 MEBV- Correlation between predicted MEBV and ABV in the validation 

data set (Bulls proven in years 2005, 2006, 2007)  

 

 

 

 

Method  Protein kg Fat kg Protein % Fat % 

Bayes SSVS  0.55 0.51 0.68 0.73 

Bayes A  0.53 0.48 0.66 0.70 

BLUP 0.60 0.48 0.66 0.64 
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Bayesian methods 
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Vector of SNP effects for calculating GEBV 
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Genomic prediction 

• Bayesian C∏ (Habier et al 2011) 

 

• Two criticisms of BayesB 

–Posterior of locus-specific variance has 

only one additional degree of freedom, 

compared to its prior regardless of the 

number of genotypes, so  
– Degree of shrinkage of depends strongly on 

prior 

– Little information coming from data 

–∏ is treated as known, not estimated 

from the data 



Genomic prediction 

• Bayesian C∏ (Habier et al 2011) 

 

• Use a common gi
2 across all SNP 

–Many degrees of freedom from data 

–A “BLUP” for SNP in model 

• Estimate ∏ from data 

–Sample from  

• Beta(K - m(t) + 1, m(t) + 1). 

• Where K is number of SNP, m(t) is the 

number of SNP in the model at iteration t 
(eg. Those not set to zero) 



Genomic prediction 

• Bayesian C∏ (Habier et al 2011) 

– Accuracy in German Holstein Friesian data set 

 

 

 

 

 

 

 

 

• Can draw inferences about trait architecture? 

 

Trait GBLUP BayesA BayesB BayesCpi 

Milk Yield 0.48 0.48 0.40 0.43 

Fat Yield 0.51 0.56 0.52 0.54 

Protein Yield 0.21 0.22 0.17 0.21 

Somatic cells 0.17 0.17 0.12 0.14 



BayesR 

• BayesR -> variants belong to one of 4 normal 
distributions, with zero, very small, small, medium 

variance 

• Posterior proportion of variants in each distribution  

 

 



Real Data, 800K 

• Reference  

– Holstein = 3049 bulls, 8478 cows 

– Jersey = 770 bulls,  3917 cows 

 

• Validation 

– Holstein = 262 bulls 

– Jersey = 105 bulls 

– Australian Reds = 114 bulls 

 

• GEBV with GBLUP, BayesR 

• (Kemper et al GSE, 2014) 



Real Data, 800K 

• r(GEBV,DTD)  

Fat Milk Protein Fat% Protein% Average 

Holstein 

GBLUP 0.60 0.59 0.58 0.72 0.83 0.66 

BAYESR 0.64 0.62 0.57 0.81 0.84 0.69 

Jersey 

GBLUP 0.56 0.62 0.67 0.64 0.76 0.65 

BAYESR 0.56 0.69 0.71 0.76 0.79 0.70 

Australian Reds 

GBLUP 0.20 0.16 0.11 0.32 0.34 0.22 

BAYES 0.26 0.21 0.13 0.44 0.36 0.28 



Genomic prediction 

• Methods for deriving prediction equation differ 
in assumptions about distribution of QTL effects 

– BLUP = normal distribution with known variance 

– Ridge regression = normal distribution with prior 
assumption about variance 

– BayesA = t-distribution, degree of shrinkage known a-
priori, or sampled 

– BayesB = mixture distribution, many effects zero 

– BayesianLASSO, double exponential distribution of 
effects 

– Bayesian C∏, estimate ∏ from data, common variance 
across SNP 

– BayesR = multiple normal distributions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Genomic prediction 

• Bayesian methods can have an advantage 
when: 

 

• QTL of moderate to large effect on the trait (eg 

Fat%, DGAT1) 

 

• Very large numbers of SNP (eg 800K) (but need 
large reference sets) – set some SNP effects to 

zero 

 

• Multi-breed, across breed genomic predictions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


