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Course Outline 
• Day 1 

– Introduction  

– Generation, quality control, alignment of sequence data 
– Detection of variants, quality control and filtering 

 

• Day 2 
– Imputation from SNP array genotypes to sequence data 

 

• Day 3 
– Genome wide association studies with SNP array and 

sequence variant genotypes 

 

• Day 4 & 5 
– Genomic prediction with SNP array and sequence variant 

genotypes (BLUP and Bayesian methods) 
– Use of genomic selection in breeding programs 



Day 5 

• Validation – traps for young players! 
 

• Design of reference populations for Genomic selection 
 

• How many markers? 

 

• How often to re-estimate SNP effects? 

 

• Optimal breeding program design with genomic selection 

 

• Genomic selection and inbreeding 

 

 



Validation of genomic selection 

• Aim of genomic selection 

– predict (young) selection candidates without phenotypes 

 

• How to test or validate predictions? 

 

• Test predictions in a population sample that is similar 
to selection candidates 

 

• Key principle of validation 

– Independence of reference and validation populations 



Validation - Accuracy of genomic prediction 

Estimate Genomic Predictions 
 

Reference Population 
 With genotypes and phenotypes 

 

Predict 
 

Validation Population 
 With genotypes and phenotypes 

 

Calculate accuracy as the correlation between 
 genomic breeding values and highly accurate breeding 

values or phenotypes. 
 Selection Candidates 

 without Phenotypes 
 



Accuracy and bias 

• Most commonly used: 

– r=correlation(GEBV,phenotypes) 

– Gives accuracy of a group of individuals 

 

• Individual accuracy 

– Calculated using the prediction error variance from the 
diagonal of the coefficient matrix (GBLUP) 

 

• Regression of phenotypes (y) on GEBV (x) 

– Deviation from expectation of the slope  

– Expectation is usually 1 

– If  not close to expectation  then biased 



Standard error of a correlation 

• Correlations have a standard error which depends on 
sample size and the magnitude of the correlation 

 

• An approximation of this standard error was given by 
Fisher (see Fisher z transform) 

– SE ~ 1/sqrt(N-3) 
 

• In our practical examples 

– 31 individuals 

– SE = 1/sqrt(31-3) = 0.189 

 



Two main ways to (cross)-validate 

• 1st way: Highly accurate individuals 
– Dairy bull progeny test (e.g. Daughter trait deviations) 

– Very large progeny groups or many clones (plant replication) 

– Step1: Estimate marker effects in reference population  

– Step2: Predict highly accurate individuals and calculate accuracy 

 

• 2nd way: ‘Classic’ cross-validation 
– Step 1: Divide dataset into n subsets of individuals 

– Step 2: Predict each subset using all other subsets  

– Step 3: Calculate accuracy in each subset and take mean across all subsets 



Approximating the accuracy of true 
breeding value 

• The upper limit of genomic selection accuracy is given by the 
accuracy of observations 

 

• Divide by accuracy of observation to approximate accuracy of 
additive genetic component (i.e. breeding value) 

 

• If using DYD (daughter yield deviations, “daughter means”) 

– r/accuracy(DYD) 

• If using phenotypes 

– r/sqrt(h2) 



Validation - Independence 

• Always ask question:  

– If the validation individuals were selection 
candidates what data would be available? 

– Then only use that data for reference! 

 

• Independence of ‘data’, not independence in 
relationship  

 



Independence 
 

• Validation individuals are not used in the reference pop 

 

• Validation phenotypes do not contribute to observed 
variables of reference pop 

– E.g. excluded when calculating estimated breeding values 

 

• Validation individuals do not have contemporaries of 
same age in reference 



Independence 

• Choosing a subset of SNP with a GWAS 

– Only use reference population to choose SNP 

– If validation population is used for GWAS then you 
are overfitting (upward bias in accuracy) 

 



Independence 

 

Wray et al., 2013. Nat. Rev. Genet. 



Target of prediction 

• Validation population should be similar to selection 
candidates 

 

• Similar relationship to reference as selection candidates 

– Same number of generations removed 

– Same breeds 

– Same population 

 

• Same SNP density 

– Consider imputation error 

 

 

 

 



Day 5 

• Validation – traps for young players! 
 

• Design of reference populations for Genomic selection 
 

• How many markers? 

 

• How often to re-estimate SNP effects? 

 

• Optimal breeding program design with genomic selection 

 

• Genomic selection and inbreeding 

 

 



Reference Population 

Genotypes  

Phenotypes 

Prediction Equation 

Genomic Breeding Value = 

w1x1+w2x2+w3x3…….. 

Selection Candidates 

Genotypes 
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Estimated 
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values 

Genomic Selection – Breeding Programs 



Reference Population 

Genotypes  

Phenotypes 

Prediction Equation 

Genomic Breeding Value = 

w1x1+w2x2+w3x3…….. 

Selection Candidates 

Genotypes 

Selected Parents 

Estimated 

breeding 

values 

Genomic Selection – Breeding Programs 

L

ir
G

g


Genetic Gain 

Selection Intensity 

Generation Interval 
Cycle Time 

Accuracy 
Genetic SD 



Genomic Selection 

- Useful for traits where variation is contributed by large 
number of loci, e.g. yield.  
 

- Large benefit for traits that are difficult/expensive to 
measure, measured late in breeding cycle 
 

- Accelerate genetic gain by reducing generation 
interval, increasing accuracy of selection and selection 
intensity 



Factors affecting genomic prediction 
accuracy 

• Reference population size (Np) 
– Genotyped and phenotyped 

 

• Heritability (h2) 

 

• Genetic diversity - number of effective chromosome segments 
(Me) 

– Effective population size (Ne) 

• Linkage disequilibrium (LD) 

– Genome length 

 

• Proportion of genetic variance captured by markers (~marker 
density) 

 
• Daetwyler et al. (2008, 2010), Goddard (2008) , Erbe et al (2014) 

 

𝑟 =
𝑁𝑃ℎ

2

𝑁𝑃ℎ
2 +𝑀𝑒

 



Reference populations for GS 

• Also called “training sets” 

 

• Two principles for design 

 

 1) Make it large -> QTL effects are small! 

 

 2) Make it close to candidates for selection 



Reference populations for GS 

• How large? 



Parameters affecting accuracy of genomic breeding values 

– Np   Size of reference population 

– h2  Heritability of trait 

– Me   Number of independent chromosome 
segments 

• Daetwyler et al. (2008, 2010), Goddard (2008)  

 

 

 

Reference populations for GS 

𝑟 =
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• Parameters affecting accuracy of genomic breeding values 

– N   Size of reference population 

– h2  Heritability of trait 

– Me   Number of independent chromosome 
segments 

• Also called number of effective loci affecting the trait 

 

 

 

Reference populations for GS 



 
• Number of loci affecting the trait  

– Conservative assumption - quantitative traits affected by very 
large number of loci, normal distribution of effects 

– = number of independent chromosome segments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Reference populations for GS 

http://www.noahsanimalfigurines.com/catalog/holstein-bull-figurine-p-562.html?osCsid=d41b1f3bbeacc9e5f49a24e48753660d
http://www.noahsanimalfigurines.com/catalog/holstein-bull-figurine-p-562.html?osCsid=d41b1f3bbeacc9e5f49a24e48753660d
http://www.noahsanimalfigurines.com/catalog/holstein-bull-figurine-p-562.html?osCsid=d41b1f3bbeacc9e5f49a24e48753660d
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• Number of loci affecting the trait  

– Conservative assumption - quantitative traits affected by very 
large number of loci, normal distribution of effects 

– = number of independent chromosome segments 

 

 

 

 

 

 

 

 

– Me = 2NeL 

• Ne = effective population size, L is genome length in 
Morgans 

 

 

 

 

 

 

 

 

 
 

Reference populations for GS 

http://www.noahsanimalfigurines.com/catalog/holstein-bull-figurine-p-562.html?osCsid=d41b1f3bbeacc9e5f49a24e48753660d
http://www.noahsanimalfigurines.com/catalog/holstein-bull-figurine-p-562.html?osCsid=d41b1f3bbeacc9e5f49a24e48753660d
http://www.noahsanimalfigurines.com/catalog/holstein-bull-figurine-p-562.html?osCsid=d41b1f3bbeacc9e5f49a24e48753660d


 

• accuracy of genomic breeding values 

 

 

 

 

• Number of chromosome segments 

– Me = 2NeL 
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Real Data 

• Dairy cattle (Holsteins)  

 USA results (N=1000-6700) for Net Merit Index 
(VanRaden et al. 2009) 

 Australian results (N=1100-3300) for Australian 
Profit Ranking 

 h2=0.9 

 Ne = 100 

 

• Accuracies r(GEBV,EBV) in validation data sets 
 

 



Deterministic prediction vs. Holstein data 
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Predicted Daetwyler et al. (2008)  

US Holstein data 

Australian Holstein data 

Hayes et al., 2009, AAABG 



Deterministic prediction 



Reference populations for GS 

• Which individuals/lines? 

 

• The relationship of the reference population to the 
selection candidates affects accuracy of GEBV 



 Habier et al. 2010 Gen. Sel. Evol. 42:5  



Influence of relationships on GS accuracy 

• Relationship of validation to reference important 
contributor to accuracy 

 



Relationship Effects on Accuracy 
 

•  Being highly related to at 
least 1 line in reference 

pop is more important 
than having a high mean 

relationship to reference 
 

Daetwyler et al., 2014. TAG 



Reference populations for GS 

• Which individuals/lines? 

 

• The relationship of the reference population to the 
selection candidates affects accuracy of GEBV 

 

• Need individuals close to those being predicted in 
reference 

 

• At the same time, as diverse as possible so that many 
individuals/lines can be accurately predicted 



Population relatedness/diversity has great 
effect on accuracy (Np = 1000, h2=0.5) 

Lin et al. 2014, Crop and Pasture Science 

Accuracy 

“Diversity” (ln(Me)) 



Ryegrass Cultivar versus Livestock Diversity?  

• Calculate Fixation 
Indices: 

• Ryegrass 

• Italian and perennial 

• Cattle 

• Dairy and beef 

• Sheep 

• Wool, meat and maternal breeds 

>=? 



Across Cultivar/Breed Prediction? 

Species Mean Fst Min Fst SD Fst 

Italian Ryegrass 0.06 0.02 0.03 

Perennial Ryegrass 0.13 0.03 0.04 

Italian to Perennial 0.27 0.13 0.09 

Cattle 0.08 0.02 0.03 

Sheep 0.06 0.02 0.02 



Expectations of Accuracy Depending on 
Reproductive System in Plants 

• Inbreeding plants 

• Higher levels of linkage disequilibrium (LD) 

• Lower Ne 

•  population level genomic selection 

 

• Outbreeding plants 
• Low LD in populations, but still high LD within family 

• High Ne in populations  need extremely large reference populations 

• but low Ne within family 

•  ‘family’ genomic selection designs 



Day 5 

• Validation – traps for young players! 
 

• Design of reference populations for Genomic selection 
 

• How many markers? 

 

• How often to re-estimate SNP effects? 

 

• Optimal breeding program design with genomic selection 

 

• Genomic selection and inbreeding 

 

 



How many markers? 

• 10*Ne*L 

– Ne = effective population size 

– L = length of genome (Morgans) 

– Meuwissen et al. (2009) GSE 

 

– E.g. Holsteins 

– 10*100*30 = 30,000 



42 

Genomic Predictions Residual Feed Intake 

• Collaboration DPI Vic, Livestock Improvement Corporation 
and Dairy NZ (Richard Spelman, Kevin MacDonald, et al.) 

• 1000 heifers each 

• Genotyped 800,000 SNPs (Illumina Bovine HD) 



Genomic predictions 

NZ heifers 

(1000) 
+ Aus trial 1 + 2  

(600) 

Prediction Equation    RFI =  x1+x2+x3+x4…+x800,000 

Aus trial 3 

(300) 

Genotypes + 

Phenotypes 

r(Predicted RFI, actual RFI) 



44 

Genomic Predictions Residual Feed Intake 

• To derive prediction equation 

 

• GBLUP -> all markers have small, non zero effect 

 

• BayesR -> proportion of markers have zero effect, rest have 
small to moderate effects 



Accuracy GEBV Residual Feed Intake 

Trait Marker Panel GBLUP BayesR 

Liveweight 50K 0.35 0.35 

  800K 0.38 0.40 

Residual Feed Intake 50K 0.29 0.39 

  800K 0.29 0.41 



Day 5 

• Validation – traps for young players! 
 

• Design of reference populations for Genomic selection 
 

• How many markers? 
 

• How often to re-estimate SNP effects? 
 

• Optimal breeding program design with genomic selection 
 

• Genomic selection and inbreeding 
 

• Use of sequence data in genomic prediction 
 



Genomic selection 

• How often to re-estimate SNP effects? 
– If the markers used in genomic selection were 

actually the underlying mutations causing the QTL 
effects, the estimation of SNP could be performed 
once in the reference population.   

• Promise of sequence data 

 

– GEBVs for all subsequent generations could be 
predicted using these effects.   



Genomic selection 

• How often to re-estimate SNP effects? 
– In practise will be markers with low to moderate 

levels of r2 with the underlying mutations (QTL)   
 

– Do not capture all of QTL variance 
 

– Over time, recombination between the markers and 
QTL will reduce the accuracy of the GEBV using SNP 
effects from the original reference population.  
 

– We need to re-estimate SNP effects 
 

– How often? 
 

 
 



Genomic selection 

• How often to re-estimate SNP effects? 
 

 

 

Table 4.3. The correlation between estimated and true breeding values in 

generations 1003–1008, where the estimated breeding values are obtained from 

the BayesB marker estimates in generations 1001 and 1002.  From Meuwissen 

et al. (2001).  

 

Generation rTBV;EBV 

 

1003 0.848 

1004 0.804 

1005 0.768 

1006 0.758 

1007 0.734 

1008 0.718 

The generations 1004–1008 are obtained in the same way as 1003 from their 

parental generations.  
 

 



Genomic selection 
• Depending on trait and population, the decay of accuracy may be 

partly dependant on genomic selection method ….. 
– Mainly true for traits with few QTL 

 
 
 
 
 
 
 
 
 

• Habier et al. (Genetics 177:2389) 
 
 
 
 
 
 
 

 
 
 

Habier et al., 2007, Genetics 



Genomic selection 

• In practice, breeders re-estimate marker effects 
often 

 

• Whenever new phenotypes or genotypes can be 
added to reference population 
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Optimal breeding program design 

• With genomic selection, we can potentially 
predict GEBV with an accuracy of 0.8 for 
selection candidates at birth 

 

• How does this change the optimal breeding 
program design? 

 

 



Optimal breeding program design 

• With genomic selection, we can potentially 
predict GEBV with an accuracy of 0.8 for 
selection candidates at birth 

 

• How does this change the optimal breeding 
program design? 

 

• Breed from individuals as early as possible  

 

 



Optimal breeding program design 

• In dairy cattle, recent structure was 
– Each year select a team of calves to form a progeny 

test team 

 

– At one years of age these bulls are mated to 
‘random’ cows from the population 

 

– At four years of age the daughters of the bulls start 
lactating 

 

 



Optimal breeding program design 
• In dairy cattle, recent structure was 

– Each year select a team of calves to form a progeny test 
team 

– At one year of age these bulls are mated to random cows 
from the population 

– At four years of age the daughters of the bulls start 
lactating 

– At five years of age the bulls receive a progeny test 
“proof” based on the performance of their daughters 

– The bulls are then selected on the basis of these proofs to 
be “breeding bulls” 

• Semen sold to commercial farmers   

 
 



Optimal breeding program design 

• In dairy cattle with genomic selection.. 
– Genotype a large number of bull calves from the 

population 

– Calculate GEBVs for these calves 
• Accuracy ~ 0.7 = accuracy of progeny test 

– Select team based on GEBV 

– Sell semen from these bulls as soon as they can 
produce it 
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Optimal breeding program design 
• In dairy cattle with genomic selection.. 

– Genotype a large number of bull calves from the 
population 

– Calculate GEBVs for these calves 
• Accuracy ~ 0.7 = accuracy of progeny test 

– Select team based on GEBV 
– Sell semen from these bulls as soon as they can produce it 

 
– Generation interval reduced from ~4 yrs to ~ 2 yrs 

• ∆G = irg/L 
– Double rate of genetic gain 
– Save the cost of progeny testing! 

• Reduce costs by 92% (Schaeffer et al. 2006) 
 

 



Genomic selection: Dairy cattle 
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Genomic selection: Meat sheep 
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Own performance 

Gains can be made by selection for breeding objective traits 
directly, e.g. Lean meat yield vs. scanned eye muscle area 



Increased genetic gain from genomic selection 

Industry Potential increase 

Dairy Cattle  60-120% (Pryce et al. 2011) 

Meat sheep  21%   (van der Werf 2011) 

Wool sheep  38%   (van der Werf 2011) 

Beef cattle 29-158% (Van Eenennaam 2011) 

Layers 40% (Dekkers et al 2009) 

Broilers 20% (Dekkers et al. 2009) 



Optimal breeding program design 

• Synergy with reproductive technologies 

• If we can predict genetic gain accurately at 
birth, genetic gain depends on generation 
interval 

• Reproductive technologies to reduce this 
– Juvenile in-vitro embryo transfer? 

– Extreme technologies like in-vitro meosis  

• Must manage inbreeding!! 



Exploring Genomic Selection in Perennial Ryegrass Breeding 

Programs Using Simulation 
 

Aim 

Investigate genetic gain achieved with genomic selection in 

perennial ryegrass breeding programs using computer simulations: 

1. Simulate a conventional ryegrass breeding program  

2. Replace phenotypic selection with genomic selection 

3. Compare the genetic gain and inbreeding between the two breeding strategies 

 

Optimal breeding program design 



• Breeder visual preference  

    (BVP, h2=0.2)  

 
• Flowering time (h2=0.6) 

 

• Persistency (h2=0.1)  

   & yield (h2=0.3) in plots 

 

Cross Accessions 

Spaced 
Plants 

Clonal 
Rows 

Small Plots 

Large 
Plots 

Base Population Varieties Pool Breeding Program 

Phenotypic Breeding of Ryegrass 



• Genomic prediction on             
persistency & yield  

- Reference from plots    

• Genomic prediction on             
persistency & yield  

- Reference from plots    

• Flowering time 
      -  Reference from clonal rows 

Cross Accessions 

Spaced 
Plants 

Clonal 
Rows 

Small Plots 

Large 
Plots 

Genomic Breeding of Ryegrass 

Base Population Varieties Pool Breeding Program 



• 10 cycles, 50 independent replicates 

C1 C2 C3 C4 

C5 C6 C7 C8 C9 C10 

C5 C6 C7 C8 C9 C10 

Phenotypic Selection 

Phenotypic Selection 

Genomic Selection 

Base Population Varieties Pool Breeding Program 

Genomic Selection: Simulation Strategy 

Equivalent to Historical Breeding Program 



• Increasing  accuracy with increased reference population size 

• Plot accuracy lower than spaced plants (due intense selection at spaced plant stage) 

• Higher accuracy of genomic selection for traits measured in spaced plants 

 

Accuracy of Genomic Selection for Ryegrass 

Accuracy persistency & yield (reference from plots) Accuracy flowering time (reference from clonal rows) 



• Genetic gain in base (cycle 4) genetic standard deviations for phenotypic and 

genomic selection over 30 years 

Genetic Gain from Ryegrass Genomic Selection 
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Optimal breeding program design 

• In plants, it may be possible to quickly turn over 
generations of breeding in glasshouse 
– Use GEBVs to select without phenotyping 

 

• Need to ensure that reference population is not too many 
generations removed from selection candidates 
 

• Could select best, but still plant out a proportion of them 
for phenotyping to update reference population 
 

• Accuracy of GEBVs needs to be high for such 
 schemes (~ > 0.7) 
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Components of a breeding value 

• Breeding values of sire and dam 

• Mendelian sampling term 

– Deviation due to sampling of alleles from parents 

 



Using genetic markers 

• Markers explain some within family variance  

– Give information on Mendelian sampling term 

 

• Genomic selection can estimate Mendelian 
sampling term very accurately 

– Due to many markers 

– Expected versus ‘realised’ relationships 

 

 

Meuwissen and van Arendonk 1992, MacKinnon and Georges, 1998, Woolliams et al 2002 



Methods’ utilisation of components 

• Assume a juvenile without phenotypes 

• Genomic selection uses Mendelian sampling term 

• Selection can act on whole breeding value! 



Measures of inbreeding/diversity 

• Rate of inbreeding per generation 
– Appropriate for comparing methods 

– Counteracting forces also occur per generation 
• Mutation 

 

• Rate of inbreeding per year 
– Relevant for breeding programs 

 

• Diversity 
– Relationship among lines/individuals 

– Number of SNP 

– Genetic variance of traits 



Effect of genomic selection on inbreeding 

• Example: 4 young elite full brothers 
– Pedigree breeding values (BLUP) are the parent average  

the same for all 4 bulls 

• Select all 4 

– GEBV will be different for all 4 

• Only select best 

 

• Genomic selection results in less inbreeding per 
generation than BLUP  
– Selection on Mendelian sampling terms 

– Reduced co-selection 

– Breeding values of sibs less correlated 



Example: GS and Diversity in Wheat 

Rutkoski et al, 2015 Plant and Animal Genomes  

• 2 year in field selection experiment in wheat 

– Two traits (Stem rust and pseudo-black chaff) 

– Compared phenotypic and genomic selection 

– Predict GEBV for 252 wheat lines from reference of 374 
lines, select 5 and intermate 

 

• Phenotypic selection slightly higher gain (within SE) 

 

• Genomic selection reduced genetic variance more 
than phenotypic 

 

 



Inbreeding of genomic selection breeding 
programs 

• Genomic selection can drastically reduce generation 
intervals 

 

• Increases genetic gain per year but also increases rate 
of inbreeding (loss of diversity) per year 

 

• Need for controlling inbreeding: 
– Mate selection for less inbred progeny 

– Optimum contribution selection  
• Maximise genetic gain at a given level of inbreeding 

– Use a diverse set of sires 

– Highly likely that elite sires change every year 



Genomic breeding in plants 
 

Diversity in plant species greater than diversity in 
important agriculture animal species. 
 

- Mammals and birds diploid 
 

- Many plants polyploid, different ploidies in one 
species 
 

- Different reproductive systems 
 • Inbreeding versus outbreeding 

 • Some outbreeding plants extremely diverse (Ne 10k +) 
 

89 
 



Plant reference genomes 

If diploid and economically important:  reference genome well 
progressed 

– maize 
 
If polyploid and economically important:  reference genomes 
progressing 

– Wheat, canola, … 
 

If diploid, polyploid and minor species:  variable progress by 
few groups 

– Need to do it yourself! 
 
Status of reference genomes a limitation to plant genotyping 
technologies. 



Genomic selection in plant breeding programs 

Want accurate estimated breeding values (GEBV) for selection 
 
• Test many selection candidates 
• Remove lowest GEBV from field trials 

– Achievable with intermediate accuracies (0.3 - 0.7) 
• Pick elite parents for crossing early 

– need higher accuracy > 70% 
• Directed selection in resource population of crosses 
• Deliver genetic gain in hard to measure trait 

 
Another way of saying the same thing 
• Reduce breeding cycle time 
• Increase accuracy of breeding value 
• Reduce phenotyping 
• Increase number of selection candidates and selection 

intensity 
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