Using sequence data in genomic selection

Motivation/Opportunity

- Genome wide association study
 - Straight to causative mutation
 - Mapping recessives
- Genomic selection (all hypotheses!)
 - No longer have to rely on LD, causative mutation actually in data set
 - Higher accuracy of prediction?
 - Better prediction across breeds?
 - Assumes same QTL segregating in both breeds
 - No longer have to rely on SNP-QTL associations holding across breeds
 - Better persistence of accuracy across generations

Using sequence data in genomic selection

Motivation/Opportunity

- Genome wide association study
 - Straight to causative mutation
 - Mapping recessives
- Genomic selection (all hypotheses!)
 - No longer have to rely on LD, causative mutation actually in data set
 - Higher accuracy of prediction?
 - Better prediction across breeds?
 - Assumes same QTL segregating in both breeds
 - No longer have to rely on SNP-QTL associations holding across breeds
 - Better persistence of accuracy across generations

Using sequence data in genomic selection **Challenges**

- Raw sequence information contains errors
- Rate varies between technologies
- Reference genomes imperfect
- Mapping of reads imperfect
- Costly
- Numbers low, coverage low \rightarrow power low?

Phantom Variants and Genotypes Reduced Imputation Accuracy Impose Upper Bound on Results

Benefits and challenges of using wholegenome sequence in genomic selection

- 36 million SNPs in cattle (1000 Bull Genomes Run4)
- Which method is most appropriate
- Priors
 - BLUP (GBLUP) -> all SNPs in LD with QTL, very small effects
 - BayesA -> some SNPs have moderate to large effects, rest very small
 - BayesB -> many SNPs have zero effect, some have small to moderate effect?

- Meuwissen and Goddard 2010
 - Simulated population with full sequence data, ~ 900 mutations chosen to be QTL
 - Used GBLUP and BayesB to predict GEBV

The accuracy of the predictions of total genetic value (\pm SE) in the TEST1 data set when the training data contained T = 200 individuals and GWBLUP or BayesB is used to estimate the marker effects

		Causative SNPs				
	GWE	BLUP	BayesB			
Data	Excluded	Included	Excluded	Included		
3 QTL 30 QTL	$\begin{array}{c} 0.503 \pm 0.011 \\ 0.491 \pm 0.016 \end{array}$	$\begin{array}{c} 0.508 \pm \ 0.011 \\ 0.493 \pm \ 0.010 \end{array}$	$\begin{array}{c} 0.938 \ \pm \ 0.013 \\ 0.806 \ \pm \ 0.023 \end{array}$	$\begin{array}{r} 0.973 \pm 0.004 \\ 0.826 \pm 0.019 \end{array}$		

Meuwissen, Goddard (2010) Genetics 185:623

- Meuwissen and Goddard 2010
 - Simulated population with full sequence data, ~ 900 mutations chosen as QTL
 - Used BLUP and BayesB to predict GEBV
 - Large advantage of BayesB over BLUP
 - Prior matches their simulated data -> only 900 QTL amongst millions of SNP
 - 3% advantage of having mutation in data
 - Real data??

- Meuwissen and Goddard 2010
 - Better persistence of accuracy over generations

Causal SNPs	TEST1: T = 200, L = 1: 30 QTL	TEST2: T = 200, L = 1: 30 QTL
Excluded Included	$\begin{array}{c} 0.806 \ \pm \ 0.023 \\ 0.826 \ \pm \ 0.019 \end{array}$	$\begin{array}{c} 0.806 \pm 0.022 \\ 0.824 \pm 0.019 \end{array}$

Table 4- Accuracy of the estimated breeding values (±SE) using SNP sequence data using two different methods and two alternative reference populations

- Sequence slightly higher accuracy if number of QTL low
- Ne simulated at approximately 100, Me about 600

- Ober et al (2012) PLoS Genetics 8(5): e1002685
- Sample size
 157 fly lines
- No difference
 GBLUP vs BayesB

- Two different opinions:
 - Yes and No Camps
- Rationale of NO Camp
 - Why would sequence be different to HD chips?
 - Accuracy based overwhelmingly on close relationships
 - Sequence variants adds just noise and more data points in already long chromosome segments being estimated

- Rationale of YES Camp
 - Allele frequency spectrum of sequence different to HD chips
 - More low MAF variants

- Causative mutations in data and higher overall LD
- Need Bayesian methods and diverse populations to take advantage of much denser SNP

- Only a few ways that accuracy can be improved by sequence data
- GBLUP accuracy is roughly independent of number of QTL
- We have 'approximately' shown that Bayesian approaches have higher accuracy than GBLUP when number of QTL is lower than number of chromosome segments (*M_e*)

Number of independent chromosome segments Me

- Measure of population diversity
 - Depends on effective population size and genomes length
- Empirical estimates place it at ~ 1000 in Holstein
- What matters is Me in your breeding/reference population

 So, if the number of QTL is lower than Me, then BayesR accuracy of sequence data will be higher

- In Holstein, Me is approximately 1000
 - Unlikely that we have <1000 QTL affecting most Holstein traits

• Can we increase Me?

- Yes, e.g. multi-breed analysis (diverse populations)

- Can we increase Me?
 - Yes, e.g. multi-breed analysis (diverse populations)

provided by Hoard's Dairyma

- Accuracy of genomic selection increased if number of QTL *is less* than Me of combined/diverse reference population
- But
 - need to also increase reference population size
 - There are many unknowns
 - E.g. how many QTL are shared between breeds?

Example: Genomic Prediction With Sequence in Dairy Cattle

Data Set	Breed Reference		Validation
	Holstein	11,527 (inc. 8478 cows)	
AusBullsCows	Jersey	4687 (inc. 3917 cows)	
	Total	16,214	114 "Aussie red" bulls (Scandinavian origin)

- BayesR -> variants belong to one of 4 distributions, with zero, very small, small, medium variance
- Posterior proportion of variants in each distribution

- BayesR -> variants belong to one of 4 distributions, with zero, very small, small, medium variance
- Posterior proportion of variants in each distribution
- Biological information: *BayesRC* -> different classes of variant

 allow different proportion of variants, in each distribution, for each class
- Do some classes have more variants of larger effect?

- 1 million Run3 variants in genes, +/- 2kb from genes
- Functional versus "regulatory" variants
- Seq_BayesRC classes:
 - 1. FUNC: Missense mutations
 - 2. REG: Upstream/downstream variants
 - 3. Rest

- 1 million Run3 variants in genes, +/- 2kb from genes
- Functional versus "regulatory" variants
- Seq_BayesRC classes:
 - 1. FUNC: Missense mutations
 - 2. REG: Upstream/downstream variants
 - 3. Rest
- Set of 792 genes that were differentially expressed under treatments leading to higher milk production
- Lact_FUNC_BayesRC classes:
 - 1. FUNC mutations in differentially expressed genes
 - 2. Other mutations in the differentially expressed genes
 - 3. Rest

r(DGV,DTD) (AusBullCows -> Aussie Reds)

Differences between whole-genome sequence and genotyping-by-sequencing

- Whole-genome
 - Usually higher coverage
 - No targeting of regions
 - Aim is a 'complete' inventory of variants in individual
- Genotyping-by-sequencing
 - Lower coverage
 - Highly multiplexed to reduce cost
 - Reduce genome space that is sequenced
 - Cut DNA with restriction enzymes
 - Some target specific genome regions
 - Allows for higher coverage in remaining regions
 - Some have high missing data
 - Rely heavily on imputation
 - Aim is to genotype more cheaply than with a SNP chip

Example: Genotyping-By-Sequencing (Genome Complexity Reduction) in Wheat

Poland et al, 2012, The Plant Genome

- Extended Elshire protocol (Elshire et al 2011, PloS ONE)
 - Cut up DNA with restriction enzyme
 - Sequence a subset of fragments
 - Impute missing using non-map methods
- 254 wheat breeding lines
 - Cross-validation accuracy
 - Compared accuracy to DArT marker

b

Example: Transcriptome-Based Genotyping-By-Sequencing in Ryegrass

- Newly developed protocol low level transcript sequencing method
- Aligned to the Impact04 transcript atlas data
 - Based on RNA seq of 11 tissues
 - 85% of genes expressed in all three tissues
- All SNPs genic
 - No target enrichment required \rightarrow reduced cost
 - May miss variation outside genes
- Generate c. 2 Million sequence reads per genotype
 - c. 1% output from 1 lane HiSeq2500
- Cost is 50\$ per sample (HiSeq 2000)

Transcript Analysis: Genotyping-By-Sequencing

- 449,713 SNPs from 85 individuals
- Validated in 288 samples
 - Including an F₁ mapping population
- Assessed segregation ratios in the mapping population
 - 139,772 high quality SNPs
- Population analysis confirmed known relationships and population structure

Within Cultivar Genomic Prediction of Agronomic Traits in Ryegrass

- Within cultivar Alto flowering time (H²= 0.85) and biomass yield (H²= 0.43)
- c. 140 individuals
- 9000 GBS SNP
- 5x fold cross-validation GS
- gBLUP and Bayesian methods (some with dominance fitted)

Flowering time

Accuracy	gBLUP			BayesianRR		Bayesian LASSO	
		Imputed	FT loci fitted as fixed effect	Dominance		Dominance	
Mean	0.641	0.649	0.690	0.659	0.658	0.644	0.660
SE	0.031	0.033	0.036	0.031	0.029	0.034	0.028

Biomass Yield

Accuracy	gB	gBLUP BayesianRR		sianRR	Bayesian LASSO	
		Imputed		Dominance		Dominance
Mean	0.383	0.411	0.403	0.459	0.424	0.482
SE	0.060	0.064	0.068	0.064	0.061	0.071