Social Interactions in Livestock

Piter Bijma

Social Interactions:

Trait values of individuals are affected by other individuals

Examples

Mortality due to cannibalism in domestic chicken (Bill Muir)

Tail biting in swine affects welfare and probably also yield

Swine: growth per day (kg)

Frank et al 1997a. J. Anim. Sci. Vol. 75(Suppl. 1):37 Frank et al 1997b. J. Anim. Sci.(Suppl. 1):38

Social interactions may suppress performance

Competition inflates size variation in aquaculture Relationship with uniformity

Examples in natural populations

Sterile helpers in social insects

Leaf cutter ants

Examples in plant breeding

Wild variety

Domestic variety

Competition for light and soil nutrients in plants

Example in plant breeding

Corn

Domestic variety

Wild variety

Link with uniformity

Rice

Classical example in livestock

Maternal effects

Beef cattle in feedlot?

Competition for light and soil nutrients in trees

Relevance for breeding?

Do social effects merit special attention?

• Why not simply:

Treat it as environmental noise

Correct for it in breeding value estimation

- e.g. include fixed effect for group size
- e.g. fit a random group effect (pigs, beef cattle)
- e.g. fit distance to a neighbor (trees)

This is not sufficient

Selection for size in aquaculture

 Simply selecting the largest fish may increase competition

 $\Box \rightarrow$ reduced benefits and increased inefficiency

Trade-off between individual benefit and group benefit

Selection for 6wk weight in quail

Experiment by Bill Muir (Purdue University)

25 generations of selection on either:

- Classical animal model BLUP-EBV
- EBV taking into account social effects (CE-BLUP)

Results: 6 Week Weight

Selection on classical BLUP-EBV yielded response in the wrong direction

Results: Mortality at Termination of Experiment

Selection on classical EBV has dramatically increased mortality

Apparantly: the fastest growing individuals are most competitive

Results: feed conversion

Feed Conversion

Increased competition may lead to a loss in efficiency

Selection on individual performance in a group setting may select for the most competitive animals

Conclusion

When traits are affected by social interactions,

then breeders should take this into account.

Otherwise they risk suboptimal or even negative response.

However

- Classical breeding theory does not explain negative response to selection
- Breeder's Equation: $\Delta G = h^2 S$
- or, $\Delta G = i r_{IH} \sigma_G$
- In theory, response is always greater than zero

We need to extend our models

Improvement of socially affected traits

- What is needed?
 - A quantitative genetic model to understand inheritance of socially affected traits
 - Methods to estimate variance components
 - Breeding designs to efficiently improve socially affected traits

The Basic Model

Individual
$$i: P_i = P_{D,i} + \sum_{j \neq i}^n P_{S,j}$$

Each individual has:

- Direct effect on self (P_D)
- Social effect on others (P_S)

$$P_1 = P_{D,1} + P_{S,2} + P_{S,3} + P_{S,4}$$

 $P_2 = P_{D,2} + P_{S,1} + P_{S,3} + P_{S,4}$

$$P_3 = P_{D,3} + P_{S,1} + P_{S,2} + P_{S,4}$$

$$P_4 = P_{D,4} + P_{S,1} + P_{S,2} + P_{S,3}$$

The social effect is "phenotypic"
 □ It may contain both genetic and non-genetic components
 □ P_s ≠ A_s, but P_s = A_s + E_s

The Basic Model

Individual
$$i: P_i = P_{D,i} + \sum_{j \neq i}^n P_{S,j}$$

Split phenotypic effects in heritable and environmental component
 P_{D,i} = A_{D,i} + E_{D,i}
 P_{S,i} = A_{S,i} + E_{S,i}

e.g. with n = 4: each phenotype is the sum of:
The direct breeding value of the individual itself
The social breeding values of its three group members
And the corresponding non-heritable terms

The Basic Model: response

Response = genetic change in mean trait value

$$P_i = A_{D,i} + \sum_{n-1} A_{S,j} + \text{terms in } E$$

$$\overline{P} = \overline{A_D} + (n-1)\overline{A_S} + \text{terms in } E$$

$$\Delta \overline{G} = \Delta \overline{A_D} + (n-1)\Delta \overline{A_S}$$

Response equals

- Response in direct effect
- plus (group size minus one) times response in social effect

-e.g. with groups of 4 individuals: $\Delta G = \Delta A_D + 3\Delta A_S$

Basic model: variance components

- Two traits
 - Direct effects
 - Social effects
- Three genetic variance components:
 - \Box Direct genetic variance: Var(A_D)
 - □ Social genetic variance: Var(A_s)
 - Direct-social genetic covariance: Cov(A_D,A_S)
- Direct-social genetic correlation:

$$r_{A_{DS}} = \frac{Cov(A_D, A_S)}{\sigma_{A_D}\sigma_{A_S}}$$

- $r_A > 0 \rightarrow$ "cooperation"
- positive effects on self go together with positive effects on others
- $r_A < 0 \rightarrow$ "competition"
- positive effects on self go together with negative effects on others

Can this model explain the observed negative responses to selection?

e.g. Mass selection with unrelated group members (Griffing, 1967) Response to mass selection with unrelated group members

$$\Delta \overline{G} = \Delta \overline{A_D} + (n-1)\Delta \overline{A_S}$$

Method: regress A_D + (n-1) A_S on the selection criterion (phenotype)

Response to mass selection with unrelated group members

$$\Delta \overline{G} = \left[\sigma_{A_D}^2 + (n-1)\sigma_{A_{DS}} \right] \frac{i}{\sigma_P}$$

 $\sigma_{A_D}^2 \frac{i}{\sigma_P} = \overline{\Delta A_D}$ is response in direct effects (= i h σ_A , the usual breeder's eqn)

 $(n-1)\sigma_{A_{DS}} \frac{i}{\sigma_P} = (n-1)\overline{\Delta A_S}$ is correlated response in social effects

Response in negative when:
$$r_{A_{DS}} < \frac{-\sigma_{A_D}}{(n-1)\sigma_{A_S}}$$

In that case: $(n-1)\Delta \overline{A_S} < 0$ and $|(n-1)\Delta \overline{A_S}| > |\Delta \overline{A_D}|$

Conclusion response to selection

If group members are unrelated and selection is on individual phenotype, then

correlated response in social effects can be negative and greater than response in direct effects, causing negative net response.

Breeding value and heritable variance

Classical model: P = A + E

 \Box A = breeding value, heritable variance = Var(A)

- □ $Var(A) \le Var(P)$; h² is proportion of Var(P) that is heritable
- \Box Response to selection equals ΔA
- Breeding value in social effects models
 - Each individual expresses its direct effect once and its social effect (n-1) times
 - □ Total breeding value: $TBV_i = A_{D,i} + (n-1)A_{S,i}$
 - TBV = heritable impact of an individual on the mean trait value of the population
 - $\Box \ \Delta G = \Delta A_{D} + (n-1)\Delta A_{S} = \Delta TBV$
 - The TBV is a generalization of breeding value to account for social effects

Breeding value and heritable variance

Heritable variance with social effects

□ Classical: Var(A)

Social effects: Var(TBV)

 $TBV_i = A_{D,i} + (n-1)A_{S,i}$

$$\sigma_{TBV}^2 = \sigma_{A_D}^2 + 2(n-1)\sigma_{A_{DS}} + (n-1)^2\sigma_{A_S}^2$$

Hence:

□ Heritable variance depends on group size (n)

Competition [Cov(A_D,A_S) < 0] reduces the heritable variance that can be used to generate response to selection

A measure of heritability

Phenotypic variance with unrelated group members

$$P_i = P_{D,i} + \sum_{j=1,n-1} P_{S,j}$$

 $Cov(P_{D,i,}P_{S,j}) = Cov(P_{S,j},P_{S,j'}) = 0$ when group members are unrelated \rightarrow

 $Var(P) = \sigma_{P_D}^2 + (n-1)\sigma_{P_S}^2$

A measure of "heritability"

 \Box T² = Var(TBV)/Var(P)

T² expresses heritable variance relative to phenotypic variance

Heritable variance in traits: example

Groups of 8 individuals

$$n = 8, h_D^2 = h_S^2 = 0.3, \sigma_{P_D}^2 = 1.0, \sigma_{P_S}^2 = 0.15, r_A = r_E = 0$$

$$Var(P) = 1 + (8 - 1) \times 0.15 = 2.05$$

$$\sigma_{A_D}^2 = 0.3 \times 1 = 0.3$$

$$\sigma_{A_S}^2 = 0.3 \times 0.15 = 0.045$$
In this example,
50% of Var(P) is due to social effects,
but 88% of Var(TBV) is due to social effects

$$Var(TBV) = 0.3 + 2 \times (8 - 1) \times 0 + (8 - 1)^2 \times 0.045 = 2.505$$
"heritability": $T^2 = 2.505/2.05 = 1.22$

Apparently, heritable variance can be greater than phenotypic variance!

Can heritable variance truly exceed phenotypic variance?

- Does Var(TBV) really reflect the heritable variance <u>that we can</u> <u>use for genetic improvement</u>?
- Classical: $\Delta \overline{G} = i r_{IH} \sigma_G$
 - □ Intensity and accuracy are scale free parameters
 - σ_G represents the genetic "variability" that can be used for genetic improvement
- Does this result also apply to the TBV?
 - \Box Can we write: $\Delta G = i r_{IH} \sigma_{TBV}$
 - If yes, then Var(TBV) really reflects the heritable variance that we can use for response to selection.

$$\overline{P} = \overline{A_D} + (n-1)\overline{A_S} + \text{terms in E} \implies$$

$$\Delta \overline{G} = \Delta \overline{A_D} + (n-1)\Delta \overline{A_S} = \Delta \overline{TBV}$$

$$\Delta \overline{TBV} = b_{TBV,C} \left(C - \overline{C} \right) \implies$$

Selection response indeed equals the change in mean TBV

C is the selection criterion

$$=\frac{Cov(TBV,C)}{\sigma_{C}^{2}}i\sigma_{C}=Cov(TBV,C)\frac{i}{\sigma_{C}}$$

$$= Cov(TBV, C) \frac{i}{\sigma_C} \times \frac{\sigma_{TBV}}{\sigma_{TBV}} = i \frac{Cov(TBV, C)}{\sigma_C \sigma_{TBV}} \sigma_{TBV} \Rightarrow$$

 $\Delta \overline{G} = i r_{IH} \sigma_{TBV}$

Accuracy is the correlation between the selection criterion and the TBV of individuals

Var(TBV) truly reflects the heritable variance that can be used for improvement

Why can heritable variance exceed phenotypic variance?

- Classical model
 - □ Breeding value is an element of the phenotype
 - P = A + E
 - \Box Consequently, Var(P) = Var(A) + Var(E)
 - $\Box \rightarrow Var(A) < Var(P)$
- Socially affected traits
 - □ An individual's total breeding value is not an element of its phenotype
 - P ≠ TBV + E
 - □ Hence, $Var(P) \neq Var(TBV) + Var(E)$
 - □ There is no need for Var(TBV) < Var(P)
- Heritable variance is "hidden" because an individual's TBV is distributed over multiple (n) individuals

Heritable variance with social effects

Conclusions

- In theory, social effects may contribute substantially to heritable variance in traits
- □ Heritable variance can exceed phenotypic variance
- Part of the heritable variance is hidden because social effects are distributed over multiple individuals
- We have to investigate how important this is in real populations

Evidence for social genetic effects from the literature

1. Results from data analysis

2. Results from selection experiments

Evidence for social genetic effects from the literature

1. Results from data analysis

2. Results from selection experiments

Survival in cannibalistic laying hens

- Laying hens of Hendrix-ISA
- **Survival time** in non-beak trimmed laying hens, 4 individuals per cage
- Three genetic lines with ~6,000, 7,000 and 4,000 individuals per line
- Survival at and of lay 55% (W1,WB) and 75% (WF)

Line	Laying	house 1	Laying house 2		
	Sires	Dams	Sires	Dams	
W1	36	287	32	250	
WB	35	276	33	261	
WF	20	159	18	135	

Table 2. Breeding scheme of the 3 layer lines per laying house

Ellen et al., Poultry Science, 2008

Table 4. Estimates of genetic parameters¹ with SE for direct effect on survival days in 3 layer lines using a traditional linear animal model

Parameter	Unit	W1	WB	WF
σ_A	d	30 ± 4	44 ± 5	16 ± 5
$\sigma_{\rm P}^2$	d ²	12.814 ± 239	20.066 ± 367	13.936 ± 333
h ²		0.07 ± 0.02	0.10 ± 0.02	0.02 ± 0.01

Table 5. Estimates of genetic parameters¹ with SE for direct and associative effect on survival days in 3 layer lines using the linear animal model of Bijma et al. (2007a)

Parameter	Unit	W1	WB	WF
σ_{λ}^2	d ²	915 ± 218	1.917 ± 394	246 ± 159
$\sigma_{A_S}^2$	d^2	134 ± 51	273 ± 85	60 ± 61
$\sigma_{A_{DS}}$ σ_{TBV}	d d	$\frac{62 \pm 76}{50 \pm 8}$	-228 ± 132 55 ± 9	$\frac{13 \pm 69}{30 \pm 21}$
- 	d ²	12.847 ± 245	20.111 + 374	13000 + 343
T ²		0.19 ± 0.06 0.18 ± 0.21	0.15 ± 0.05 -0.31 ± 0.18	0.06 ± 0.06 0.11 ± 0.55
ρ		0.08 ± 0.02	0.08 ± 0.02	0.10 ± 0.02

Clear evidence for heritable social effects on survival time

Number of observations and means of traits per feeding strategy

	Feeding		
	Restricted ^a	Ad libitum	A11
No. of animals penned	11,469	4,965	16,434
Penning weight (kg)	27.7	27.2	27.6
No. of animals with	9,541	4,491	14,032
slaughter records			
Hot carcass weight (kg)	86.3	88.9	87.1
Growth rate (g/day)	823	881	841
Back fat thickness (mm)	16.6	17.6	16.9
Muscle depth (mm)	57.2	58.6	57.6
No. of animals with	0*	4,342	4,342
individual feed intake		-	
Feed intake (g/day)	6	2,141	2,141

"The amount of feed was restricted per pen.

*Individual feed intake of restricted fed animals was unknown. Bergsma et al., 2008 Genetics

Trait	$\hat{\sigma}_A^2$	$\hat{\sigma}_{c}^{2}$	$\hat{\sigma}_{e}^{2}$	$\hat{\sigma}_{P}^{2}$	\hat{h}^2
Growth rate (g/day)	$2,583 \pm 249$	868 ± 70	$3,820 \pm 141$	$7,272 \pm 133$	0.36 ± 0.03
Back fat thickness (mm)	2.83 ± 0.23	0.28 ± 0.05	4.67 ± 0.14	7.78 ± 0.13	0.36 ± 0.03
Muscle depth (mm)	7.94 ± 0.76	1.09 ± 0.21	23.07 ± 0.52	32.10 ± 0.48	0.25 ± 0.02
Feed intake (g/day)	$41,275 \pm 3,384$	$15,201 \pm 2,019$	$39,749 \pm 6,050$	$96,226 \pm 2,982$	0.41 ± 0.04

Estimates from the classical approach

Estimates were obtained using model 1 (Equation 6); ± indicates standard errors of estimates.

Inclusion of a random **pen effect** to account for non-heritable social effects

TABLE 4

$\hat{\sigma}_A^2$	$\hat{\sigma}_{c}^{2}$	$\hat{\sigma}_{g}^{2}$	$\hat{\sigma}_{e}^{2}$	$\hat{\sigma}_P^2$	\hat{h}^2
$1,780 \pm 172$	259 ± 43	$1,929 \pm 90$	$3,057 \pm 101$	$7,023 \pm 122$	0.25 ± 0.02
2.79 ± 0.23	0.18 ± 0.05	0.44 ± 0.05	4.37 ± 0.14	7.78 ± 0.13	0.36 ± 0.02
7.69 ± 0.74	0.86 ± 0.21	1.03 ± 0.18	22.44 ± 0.51	32.02 ± 0.47	0.24 ± 0.02
$17,678 \pm 3,244$	$2,\!689 \pm 1,\!092$	$41,018\ \pm\ 3,346$	$35,780 \pm 1,986$	97,165 ± 3,573	$0.18\ \pm\ 0.03$
	$\hat{\sigma}_A^2$ 1,780 ± 172 2.79 ± 0.23 7.69 ± 0.74 17,678 ± 3,244	$\begin{array}{ccc} \hat{\sigma}_A^2 & \hat{\sigma}_c^2 \\ 1,780 \pm 172 & 259 \pm 43 \\ 2.79 \pm 0.23 & 0.18 \pm 0.05 \\ 7.69 \pm 0.74 & 0.86 \pm 0.21 \\ 17,678 \pm 3,244 & 2,689 \pm 1,092 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Estimates from the classical approach including random pen effects

Estimates were obtained using model 2 (Equation 7); ± indicates standard errors of estimates.

A substantial drop in h^2 when including pen effects \rightarrow when not accounted for, non-heritable social effects may bias estimates of heritability

Table 5. Variance components when including social interactions

Trait	$\sigma^2_{ m direct}$	$\sigma^2_{ m social}$	$\sigma^2_{\rm TBV}{}^{1)}$	T^2	r _{Aos}
daily gain	1523 ± 157	46 ± 7	4602±518	0.71 ± 0.07	0.21 ± 0.10
Backfat	2.74 ± 0.23	0.006 ± 0.003	3.04 ± 0.34	0.40 ± 0.04	0.02 ± 0.18
Muscle depth	6.68±0.51	0.015 ± 0.012	9.59 ± 1.13	0.31 ± 0.04	0.49±0.30
Feed intake	141 <i>5</i> 0 ± 3426	843 ± 239	70491±16460	1.02 ± 0.25	0.31 ± 0.19

Large contribution of social effects to heritable variance in growth rate and feed intake Zero or positive genetic correlation between direct and social effects \rightarrow "cooperation" No evidence of social effects for back fat and muscle depth

Comparison between restricted and ad libitum feeding

Table 6. Variance components and percentage of heritable variation (T^2) for net daily gain.					
σ ² åireαt	$\sigma^2_{\rm social}$	σ^2_{TBV}	T^2	$r_{A_{OS}}$	
1619 ± 199	54 ± 9	4982 ± 642	0.79 ± 0.11	0.18 ± 0.11	
1747 ± 272	92 ± 18	6745 ± 1141	1.19 ± 0.22	0.08 ± 0.14	
1484 ± 160	45 ± 7	4423 ± 514	R ³⁾ 0.66 ± 0.08 A ³⁾ 0.74 ± 0.09	0.20 ± 0.10	
	e components a σ ² åme⊄ 1619 ± 199 1747 ± 272 1484 ± 160	e components and percenta σ ² mea σ ² modal 1619±199 54±9 1747±272 92±18 1484±160 45±7	e components and percentage of heritable v σ^2_{direct} σ^2_{sodal} $\sigma^2_{TBv}^{1)}$ 1619 ± 199 54 ± 9 4982 ± 642 1747 ± 272 92 ± 18 6745 ± 1141 1484 ± 160 45 ± 7 4423 ± 514	e components and percentage of heritable variation (T ²) for no $\sigma^{2}_{\text{direct}}$ $\sigma^{2}_{\text{solid}}$ σ^{2}_{TBV} ¹⁾ T ² 1619 ± 199 54 ± 9 4982 ± 642 0.79 ± 0.11 1747 ± 272 92 ± 18 6745 ± 1141 1.19 ± 0.22 1484 ± 160 45 ± 7 4423 ± 514 R ³⁾ 0.66 ± 0.08 A ³⁾ 0.74 ± 0.09	

Surprise:

- Social effects seem largest with ad libitum feeding
- Restricted feeding yielded highest r_A

Other results

- Beef cattle
 - □ Gain of Hereford bulls in feed lot
 - □ Van Vleck et al., 2007, JAS (~1,800 obs)
 - □ Social effects in gain only during first 28 days in feedlot, $T^2 \approx 1$ to 2.
 - □ Small size of data set limiting factor.

Growth of pigs

- □ Arango et al., 2005, JAS (~5,000 obs.)
- □ Large effects, $T^2 \approx 4.8$
 - Convergence problems
- □ Chen et al., 2008, JAS (~11,000 obs)
 - $h_D^2 = 0.2$ and $T^2 = 0.60 \rightarrow 3$ -fold increase
 - $r_A = 0.25 \rightarrow$ "cooperation"
- Many authors did not realize that their estimates are extremely large
 Judging h_s² = Var(A_s)/Var(P), rather than T² = Var(TBV)/Var(P)

Evidence for social genetic effects from the literature

1. Results from data analysis

2. Results from selection experiments

Results of selection experiments

- Some experiments show positive response when the selection methods specifically targets social effects
- Two examples comparing individual to group selection

Group vs individual selection against mortality in laying hens (Muir)

Group vs. individual selection in plants

Goodnight, 1985

- Group vs. Individual Bi-directional Selection for Leaf Area in Cress (tobacco)
- Group Selection produced a Positive responses in both directions
- Individual selection Failed in both directions
 - Probably due to correlated response in competitiveness

Conclusions

Still limited evidence for heritable social effects
 Selection experiments are convincing in my opinion
 Not all data is suitable

□ Group composition and number of groups is important

- Often estimated T^2 is rather large, but unnoticed
- Often Cov(A_D,A_S) > 0, indicating "cooperation", nevertheless studies refer to "competitive effects"