Maternal Genetic Effects

A special case of heritable social effects
Maternal effects

- Juvenile traits in mammals depend on “environment provided by the mother”
 - Juvenile growth rate in pigs → milk yield of dam
 - Calving ease in cattle → rump angle and width of dam
 - Juvenile mortality in pigs → maternal behavior

- Maternal effects are a “social environment”
 - Partially heritable → breeding interest
Components of maternally affected traits

- Wilham (1963)
 - \(P_{\text{offspring}} = \text{Direct} + \text{Maternal} \)
 - \(= A_{D, \text{offspring}} + E_{D, \text{offspring}} + A_{M, \text{dam}} + E_{M, \text{dam}} \)

- Two genetic components, \(A_D, A_M \)
 - Three variance components
 - \(\text{Var}(A_D), \text{Var}(A_M), \text{Cov}(A_D, A_M) \)

- Response to selection: \(\Delta P = \Delta A_D + \Delta A_M \)
 - Total breeding value of individual:
 - \(G_i = A_{D,i} + A_{M,i} \)
 - Total genetic variance in trait
 - \(\text{Var}(G) = \text{Var}(A_D) + 2\text{Cov}(A_D, A_M) + \text{Var}(A_M) \)
 - Maternal effects may either increase or decrease the heritable variation
 - Depending on \(\text{Cov}(A_D, A_M) \)
 - Total “heritability”: \(T^2 = \frac{\text{Var}(G)}{\text{Var}(P)} \) (Eaglen and Bijma, JDS 2009)

Better individuals
Better mothers
Maternal effects and heritability

- “total heritability”
 - Willham, 1972; Meyer, 1992; Luo et al., 2002

\[h_r^2 = \frac{\sigma^2_{AD} + \frac{1}{2} \sigma^2_{ADM} + \frac{1}{2} \sigma^2_{AM}}{\sigma^2_p} \]

- This is the realized heritability of mass selection
- \(h_r^2 \) is the regression coefficient of \(A_D + A_S \) on \(P \)
- \(\Delta G_{mass} = h_r^2 S \)

- \(T^2 \) expresses the heritable variance that can be used for response, irrespective of the selection method

\[R = i r_{IH} \sigma_{TBV} \]

\[T^2 = \frac{\sigma^2_{TBV}}{\sigma^2_p} \]
Maternal effects and accuracy

\[R = i r_{IH} \sigma_{TBV} \]

- \(r_{IH} = \text{corr}(\text{selcrit}, A_D + A_M) \)
- This applies to any selection method

For mass selection

\[r_{IH} = \frac{\sigma_{AD}^2 + \frac{1}{2} \sigma_{ADM} + \frac{1}{2} \sigma_{AM}^2}{\sigma_p \sigma_{TBV}} \neq \sqrt{h_r^2} \]
Estimating variance components

- **Parameters of interest**
 - $\text{Var}(A_D)$, $\text{Var}(A_M)$, $\text{Cov}(A_D, A_M)$
 - Estimated $\text{Cov}(A_D, A_M)$ often strongly negative → statistical artifact?
 - Koerhuis and Thompson (1997)

- **Where does the info come from?**
 - $\text{Var}(A_M)$: Individuals with the same dam are similar
 - Problem: Full sibs also have $\frac{1}{2}A_D$ in common
 - Confounding of $\text{Var}(A_D)$ with $\text{Var}(A_M)$
 - Problem: Full sibs also have E_M in common (c^2)
 - Confounding of $\text{Var}(A_M)$ with $\text{Var}(E_M)$
 - $\text{Cov}(A_D, A_M)$: Similarity between dam and offspring
 - Problem: dam and offspring also have $\text{Cov}(E_D, E_M)$
 - Two distinct traits of the same individual (the dam)

- **Beware of confounding**
 - Not accounting for non-genetic covariances → biased genetic parameter estimates
 - We need to identify all the covariances between relatives
Covariances dam and offspring

Dam: $P_d = A_{D,d} + E_{D,d} + A_{M,gd} + E_{M,gd}$

Off: $P_{off} = \frac{1}{2}A_{D,d} + A_{M,d} + E_{M,d} + \ldots$

$Cov(P_d, P_{off}) = \frac{1}{2} \sigma^2_{A_D} + \frac{1}{4} \sigma_{A_{DM}} + \frac{1}{2} \sigma^2_{A_M} + Cov(E_D, E_M)$

- Relationship matrix in MME
- Residual covariance of dam and offspring record
Covariances full sibs

FS1: \(P_{\text{off}} = \frac{1}{2}A_{D,s} + \frac{1}{2}A_{D,d} + A_{M,d} + E_{M,d} + \ldots \)

\[\begin{align*}
\frac{1}{2} \sigma^2_{AD} & \quad \sigma^2_{ADM} & \quad \sigma^2_{AM} & \quad \sigma^2_{EM} \\
\end{align*} \]

FS2: \(P_{\text{off}} = \frac{1}{2}A_{D,s} + \frac{1}{2}A_{D,d} + A_{M,d} + E_{M,d} + \ldots \)

\[\begin{align*}
\frac{1}{2} \sigma^2_{AD} & \quad \sigma^2_{ADM} & \quad \sigma^2_{AM} & \quad \sigma^2_{EM} \\
\end{align*} \]

\[\text{Cov}_{FS} = \left(\frac{1}{2} \sigma^2_{AD} + \sigma^2_{ADM} + \sigma^2_{AM} + \sigma^2_{EM} \right) \]

- Relationship matrix
- "common environment" \(c^2 \)
Covariances between relatives

- Conclusions
 - Maternal effect create additional genetic and non-genetic covariances among relatives
 - In the MME
 - Genetic covariances \rightarrow A-matrix in MME
 - Non-genetic covariances
 - Dam-offspring \rightarrow variance structure of residuals
 - Full-sibs \rightarrow c^2
Resulting mixed models

- One offspring per dam (no full sibs)
 \[y = Xb + Z_D a_D + Z_M a_M + e \]
- \(Z_D \) is the usual incidence matrix
 - a “1” for each animal, zero elsewhere \(\rightarrow Z_D = I \)
- \(Z_M \) is the incidence matrix for the mother
 - a “1” at the position of the mother \(\rightarrow Z_M = I \)
- \(\text{Cov}(e_i, e_j) = \text{Cov}(E_D, E_M) \) when \(i \) and \(j \) are dam and off.

\[
\text{Var}\left[\begin{bmatrix} a_D \\ a_M \end{bmatrix} \right] =
\begin{bmatrix}
A \sigma_{AD}^2 & A \sigma_{ADS} \\
A \sigma_{ADS} & A \sigma_{AS}^2
\end{bmatrix}
\]

\[
\text{Var}(e) = R \sigma_e^2
\]
\[
R_{ii} = 1
\]
\[
R_{ij} = \rho \text{ when } i \text{ and } j \text{ dam and offspring}
\]
\[
\rho = \frac{\text{Cov}(E_D, E_M)}{\sigma_e^2}
\]
\[
R_{ij} = 0 \text{ elsewhere}
\]

Fit a correlated residual between dam and offspring

Bijma, JAS, 2006
Resulting mixed models

- One litter per dam (full sibs of a single litter)
 \[y = Xb + Z_D a_D + Z_M a_M + Z_C c + e \]
 - \(Z_C \) has a “1” at the position of the litter, zero elsewhere
 - \(Z_C = I_{n_{\text{litters}}} \)
 - \(e_c \) contains \(E_{M,d} \)
 - The residual of the dam, \(e_{\text{dam}} \) contains \(E_{D,d} \)
 - \(\text{Cov}(e_{\text{c,off}}, e_{\text{dam}}) = \text{Cov}(E_{D}, E_{M}) \)

\[
\text{Var}\left[
\begin{bmatrix}
 e_c \\
 e
\end{bmatrix}
\right] =
\begin{bmatrix}
 \text{I} \sigma_c^2 & \text{B} \sigma_{E_{DM}} \\
 \text{B} \sigma_{E_{DM}} & \text{I} \sigma_e^2
\end{bmatrix}
\]

- \(\text{B} \) connects birth litters of individuals to the records of their dams

Need to fit a correlation between the common environment of the offspring and the residual of the dam

Problem: no software (R?)

Bijma, JAS, 2006
Omitting residual variance structures

Estimated genetic correlation when fitting independent residuals

<table>
<thead>
<tr>
<th></th>
<th>True $r_{g} = 0$</th>
<th>True $r_{g} = 0.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{E} = 0$</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>$r_{E} = 0.3$</td>
<td>0.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Severe bias may occur

Other factors that may solve extreme estimated r_{g}
- Fixed effects in the model
- (random) sire by herd effect (cattle)
 - Koerhuise and Thompson (1997)
What data is needed?

- Relationships via the sire
 - Avoid confounding $A_{D,d}$ with $E_{D,d}$

- Direct effect is expressed in offspring
 - 1: $\text{Cov}_S = \frac{1}{4}\text{Var}(A_D)$

- Maternal effect is expressed in grand-offspring via daughter
 - 2: $\text{Cov}_S = (1/16)\text{Var}(A_D) + \frac{1}{4}\text{Var}(A_M) + (1/8)\text{Cov}(A_D,A_M)$

- Covariance is observed in covariance between offspring and grand-offspring
 - 3: $\text{Cov}_S = (1/8)\text{Var}(A_D) + \frac{1}{4}\text{Cov}(A_D,A_M)$

- 3 equations with 3 unknowns \rightarrow can be solved
 - When full sibs or dam-offspring pairs occur in the data \rightarrow account for non-genetic covariances in the model
 - Or remove those data if possible
 - AI: Use sire-mgs-mmgs models to avoid covs from the dam side

- We need sires that have both offspring and maternal grand-offspring
What data is needed

Calving ease in dairy cattle

<table>
<thead>
<tr>
<th>Variable</th>
<th>Full</th>
<th>Subset 1</th>
<th>Subset 2</th>
</tr>
</thead>
<tbody>
<tr>
<td># of records</td>
<td>677,795</td>
<td>98,162</td>
<td>99,328</td>
</tr>
<tr>
<td># of sires</td>
<td>4,635</td>
<td>4,586</td>
<td>2,682</td>
</tr>
<tr>
<td># of herds</td>
<td>19,985</td>
<td>11,363</td>
<td>4,055</td>
</tr>
<tr>
<td># of dams</td>
<td>677,795</td>
<td>98,162</td>
<td>99,328</td>
</tr>
<tr>
<td># of dams with own birth record</td>
<td>101,445</td>
<td>49,081</td>
<td>0</td>
</tr>
<tr>
<td># maternal grandsires</td>
<td>18,467</td>
<td>6,177</td>
<td>17,963</td>
</tr>
</tbody>
</table>
Calving ease in dairy cattle

Table 6. Estimated genetic parameters

<table>
<thead>
<tr>
<th>Model/data set</th>
<th>k_D^2</th>
<th>k_M^2</th>
<th>$r_{G_{DM}}$</th>
<th>ρ^I</th>
<th>$T^{2.8}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subset 1a</td>
<td>0.077±0.007</td>
<td>0.028±0.006</td>
<td>-0.11±0.09</td>
<td>-</td>
<td>0.095±0.007</td>
</tr>
<tr>
<td>Subset 1b</td>
<td>0.076±0.008</td>
<td>0.027±0.006</td>
<td>-0.13±0.11</td>
<td>0.003±0.008</td>
<td>0.091±0.012</td>
</tr>
<tr>
<td>Subset 2</td>
<td>0.088±0.007</td>
<td>0.042±0.010</td>
<td>-0.10±0.14</td>
<td>-</td>
<td>0.116±0.013</td>
</tr>
<tr>
<td>Subset 3</td>
<td>0.087±0.007</td>
<td>0.055±0.011</td>
<td>-0.16±0.12</td>
<td>-</td>
<td>0.120±0.014</td>
</tr>
<tr>
<td>Subset 4</td>
<td>0.090±0.007</td>
<td>0.061±0.011</td>
<td>-0.44±0.09</td>
<td>-</td>
<td>0.085±0.012</td>
</tr>
<tr>
<td>Subset 5</td>
<td>0.091±0.007</td>
<td>0.025±0.007</td>
<td>-0.04±0.14</td>
<td>-</td>
<td>0.112±0.012</td>
</tr>
<tr>
<td>Average S2-S5</td>
<td>0.088±0.004</td>
<td>0.040±0.005</td>
<td>-0.24±0.06</td>
<td>-</td>
<td>0.107±0.006</td>
</tr>
</tbody>
</table>

Even with 100,000 records, $r_{A,DM}$ is not very accurate.
Conclusions maternal effects

- Maternal effects are just a special kind of social interactions
 - Fits within the same theoretical framework

- Data analysis is challenging

- Derive the expected covariances among relatives to:
 - Identify possible confounding of genetic and environmental covariances (BIAS)
 - Identify powerful schemes for estimation