Introduction to Plant Breeding

A Parochial view

Origins of crops Scientific approaches 1850... present Plant & animal breeding compared Achievements & questions

Matthew 7:18-7:20 A good tree cannot bring forth evil fruit, neither can a corrupt tree bring forth good fruit. Every tree that bringeth not forth good fruit is hewn down, and cast into the fire. Wherefore by their fruits ye shall know them.

The Scientific approach to plant breeding

Two strands:

1. Mendelian:

Incorporate information from genes into selection decisions championed by plant breeders

2. Biometric:

Incorporate information from relatives into selection decisions championed by animal breeders

Prospects: we now have the technology to combine the two.

John Goss (1824) On Variation in the Colour of Peas, occasioned by Cross Impregnation Horticultural Transactions (Series 1) Vol:5, p. 234-237 + 1 fig

Some milestones in Mendelian genetics & breeding

- 1823: Knight: Dominance, recessiveness, and segregation observed in peas
- 1900: Rediscovery and verification of Mendel's principles
- 1903: Biffen: resistance to stripe rust of wheat is Mendelian recessive.
- 1908: Nilsson-Ehle: seed colour in wheat is due to 3 Mendelian factors.
- 1923: Sax: linkage between quantitative and qualitative traits in beans.
- 1956: Flor: gene for gene hypothesis for host-parasite resistance
- 1965-70 Borlaug: Green Revolution (India & Pakistan) based on dwarfing genes.
- 1983: Beckmann & Soller : RFLPs for genome wide QTL detection and breeding
- 2001: Meuwissen *et al* : Genomic selection proposed

Wheat Genetic history: plant breeding.

Dwarfing genes reduced

Whigh increased susceptibility to Used dition the finite operation of the developed of the finite operation of the developed of the more grains per ear. • Fungicide

Quantitative methods in plant breeding -

Information from genes.

Some milestones in biometrical genetics & breeding

1840-50	de Vilmorin: progeny test in wheat, oat, and sugar-beet breeding.
1889	Galton: publishes Natural Inheritance, a statistical statement of the relative influence of parents
1921	Wright: relationships between relatives
1936	Smith: selection index
1947	Lush : Family merit & individual merit as a basis for selection
1953	Henderson: origins of BLUP
1971	Patterson & Thompson REML
2001	Meuwissen et al : Genomic selection proposed

Both approaches are linked by the breeders' equation $R = h^2S$.

Everything in plant (and animal) breeding can be judged by its effect on "the breeders' equation."

The breeders' equation $R = h^2S$.

Some arbitrary dates in plants breeding methods

1840-50	de Vilmorin	progeny testing
1909	Nilsson-Ehle	scientific wheat breeding: pedigree breeding, bulk breeding
1878-81	Beal	corn hybrids yield more
1909	Shull:	use of F1 hybrids between inbreds in corn breeding
1924	Blakeslee & Belling	report doubled haploids
1939:	Golden	single seed descent
1936	?	haploids and polyploids

Some features of plant breeding methods

Replicate genotypes:	clones inbred lines DH lines F1 hybrids
Heritabilities	vary through replication
Inbreeding is quick	self: S1,S2Sn, doubled haploids
Mating systems:	selfing, outcrossing gms, cms, S alleles,
Polyploids:	haploids, allopolyploids, autopolyploids
Use of ancestral species	eg synthetic wheat
GxE	generally larger than in animals
Half sibs	have a common female parent

Methods for selection within crosses

Pedigree breeding

Single seed descent

Doubled haploids

Bulk breeding

Pedigree method

Single Seed Descent

Single Seed Descent

Goulden (1939) Knott & Kumar (1975) wheat

Pedigree breeding: inbreeding & selection concur

SSD: separate inbreeding from selection (faster)

Proposed and developed for breeding.

Use in trait mapping is more recent.

Doubled Haploids

Doubled Haploids

"The practical importance of haploids and polyploids in plant breeding is being quickly recognised and it seems possible that their artificial production will be simply a matter of technique in the near future." *Imperial Bureau of Plant Genetics, 1936*

Faster than SSD

Expensive Low efficiency in some crops Less recombination

Bulk Breeding

Bulk breeding

As slow as pedigree breeding

Encourage selection in the bulk (natural & artificial)

F2s contribute unequally to inbred lines

Long history (Allard, Harlan)

Not much used in commercial plant breeding.

Regularly rediscovered by academics. And funded!

Hybrid breeding

General combining ability

Specific combining ability

Circulant partial diallels

Heterotic groups

Reciprocal recurrent selection

More money

Cereal yields in the UK

winter wheat genetic and environmental trends

first year in trial

Linear trends in yield (t/ha)

1982-2007 NL/RL trials

	varieties	years
winter wheat	0.074	0.010
spring barley	0.060	-0.006
winter barley	0.071	0.010
maize	0.109	0.108
sugar beet	0.105	0.112
oilseed rape	0.064	-0.019

N use for tillage crops: England & Wales

Screen for sensitivity to climatic stress?

Some challenges & questions; a personal view

Have yields stopped rising?

Should we care about GxE?

What proportion of quantitative variation has originated by mutation since domestication: should we sample wild and old germplasm for yield QTL?

Do we get enough recombination?

Why are yield and quality negatively correlated?

Are the days of breeding to exploit natural variation numbered by GM?

What is the best design of a breeding programme to exploit GS?

Monday pm

• Population genetics and linkage disequilibrium

Books

Felsenstein

http://evolution.genetics.washington.edu/

Weir Genetic Data Analysis 2nd ed.

http://statgen.ncsu.edu/powermarker/

GH Hardy 1877-1947

"There is no permanent place in the world for ugly mathematics."

"I am reluctant to intrude in a discussion concerning matters of which I have no expert knowledge, and I should have expected the very simple point which I wish to make to have been familiar to biologists."

Hardy-Weinberg Equilibrium 1908

A sufficient condition for no evolution to occur within a Mendelian population is that mutation, selection, and chance effects are all absent and that mating is at random.

The hereditary mechanism, of itself, does not change allele frequencies. The constancy of genotype frequencies then follows from the presence of random mating.

The Hardy-Weinberg Law

Nothing changes except for:

mutation selection sampling variation (drift) migration non-random mating

The Hardy-Weinberg Law

genotype frequency alleles	AA	X all A	Aa	2Y ½ A, ½ a	aa all a	Z
Frequency of A Frequency of a with $p + q = 1$	A gamete I gamete	X + ½ 2Y Y + ½ 2Y	= p say = 1-p = q	say		
r	male gamete (f			female ga A (p)	amete (fre	eq) a (q)
l l	A (p) a (q)	req)		AA (p²) Aa (pq)		Aa (pq) aa (q²)
-	\rightarrow		AA p²		Aa 2pq	aa q²
F	Frequency A:		p² + ½ 2p	q = p(p+q)) = p	

Polyploids

 $(p_1A_1+p_2A_2+p_3A_3...p_nA_n)^p$

Eg Bufo pseudoraddei baturae

Non-random mating.

	AA	Aa	а		аа	
	p²+pqf	2ŗ	oq(1-f)		q²+pqf	
		Selfing se	eries			
generation		AA		Aa		аа
0		p ²		2pq		q ²
1		p ² +pq/2		pq		q²+pq/2
2		p ² +pq3/	4pq/2		q²+pq3/4	
3		p ² +pq5/	8pq/4		q²+pq5/8	
∞		p² +pq	= p	0		$q^2 + pq = q$

Mixed selfing and random mating

Wahlund effect

Subdivided populations have reduced heterozygosity:

Frequency in population 1	=	$p_1 = p + x$
Frequency in population 2	=	p ₂ = p-x
Average heterozygosity	=	(2p ₁ q ₁ + 2p ₂ q ₂) / 2
	=	(p+x)(1-p-x) + (p-x)(1-p+x)
	=	$2pq - 2x^2$

Cross pops– observe excess of hets:

$$= (p+x)(1-[p-x]) + (1-p-x)(p-x) \\= 2pq + 2x^2$$

Explanation for heterotic pools and composite varieties

Linkage Disequilibrium

Random mating between individuals generates equilibrium genotype frequencies at a single locus. (Hardy-Weinberg equilibrium)

Random assortment of chromosomes in meiosis generates equilibrium frequencies between loci.

(Linkage equilibrium)

At equilibrium:

	loc B	r (B)	s (b)
Loc A			
p (A)		pr AB	ps Ab
q (a)		qr aB	qs ab

Rearranging:

AB	Ab	aB	ab
pr	ps	qr	qs

Same in the next generation

With arbitrary frequencies

I oo A	loc B	В		b	
LOC A		***		V	
А		W		λ	
a		У		Ζ	
	Compa	re observed	and expected	with χ^2	
	AB		Ab	aB	ab
Observed	ł w		X	У	Ζ
Expected	l pr		ps	qr	qs
O – E	+D	_	D	-D	+D

D = observed frequency minus expected frequency

 $D = p(AB) - p(A) \cdot p(B)$

or $-D = p(aB) - p(a) \cdot p(B)$

etc.

Some properties of the D

Max value is 0.25, when p(A)=p(B)=0.5

At other allele freqs. max. value can be small eg

p(A)=p(B)=0.9 $D_{max} = 0.09$

To make interpretation easier, define:

D' = D / D_{max} range 0-1
or
$$\Delta = \underline{D}$$
 range 0-1
 $\sqrt{(p(A)p(a)p(B)p(b))}$

Comparison of LD measures

- $\Delta \rightarrow 1$: allele freqs match, two haplotypes
- D' \rightarrow 1: allele freqs don't matter, three haplotypes

LD measures for multiple alleles

Calculate D' or r^2 for each pair of alleles in turn.

Take the average, weighted by the expected frequency (p_1p_2)

Estimates tend to be biased upwards in small samples. The bias can be quite large.

Correct by permutation testing.

The decay of Linkage Disequilibrium $D_1 = (1-\theta) D_0$ $D_t = (1-\theta)^t D_0$

# gens	unlinked	5cM	0.5cM	[50k
0	1	1	1	1
1	0.50	0.95	1	1
10	0	0.60	0.95	1
100	0	0.01	0.61	0.95
1000	0	0	0.01	0.61
10000	0	0	0	0.01

Proof

To decay, LD needs recombination. Recombination need double heterozygotes

AB/ab occur at a frequency 2(pr + D)(qs +D) Ab/aB ------ditto----- 2(ps-D)(qr-D)

Arbitrarily select gamete type AB to follow over 1 generation:

 $P_{(AB)} = 2(pr + D)(qs +D) (1-\theta) /2 + 2(ps-D)(qr-D) \theta /2$ (non recs from AB/ab) (recs from Ab/aB)

Ignore terms not involving θ to get change in P_(AB)

$$= [-(pr + D)(qs + D) + (ps - D)(qr - D)]\theta = -\theta D$$

New value of D is therefore $D - \theta D = D(1 - \theta)$

Over t generations: $D_t = D_0(1 - \theta)^t$

LD decays with time and recombination fraction

Decline in LD with genetic distance

Decline of between marker association over genetic distsnce. UK wheat all genomes.

LD in Barley varieties

Chromosome 2, Barley, AGUEB SNP data

The Causes of Linkage Disequilibrium

Mutation

Sampling

Migration

Selection

drift, founder effect

Mutation

Gen.	Allele freq	D'	Δ
0	1/2N	1	0
X	?	?	?

Although mutation generates LD, this is not very interesting. It is the fate following mutation which is important.

Drift

$\mathbf{E}(\Delta^2) = 1$

$1 + 4N_e\theta$

On average, as population size and recombination increase, LD falls

Distribution of LD in founder population size 10

Ch-		1	2 3	4	5	and!	6	2	1	9	10	11	12 1	3	И	1.f	16	12	8	19		2	0	21	22	23	34	25	26 2	7 22	\$ 20
1	1	1			È							6	A	ľ						۲.				Ц	i.				r,		T
2	Ĩ			a	η.		1			X.					22	協	R		ł	ЪŠ	4	2.7					1		Ť,		1
3			: (¶	1		1	-		T.	3	÷ 4,	in.				1	1		Ê l		C.		14	a.	E	A	R	a	9	Ĩ.	Ē
4	-	10		1	12								12					h,	Ŧ	12		- F		Ľ	T	Ń		E,			1 7
5	Ë			35					新	1		P	24	T	et a			9	1	1				in the	ť	É				1	ŝ,
	ł,			IJ	ST.				T.		7	ā.	21			h	P	1		E.				Ě			5		7		1
6	Ę			갧	51	53	77		H			8	71	H			A		1				2.10	L.		Ð		2		5	F
	3	i de								2		-	34				4		L	i.	-			e			X	A		×	L,
7	1	18	5.84	魏			17	61	H.	Ŧ	1	-	τ¢.	T.			6		Ľ.					R		3	f.	Ē	Ť.	18	Ē,
B				苔	1	ST.			P.			1	24		LT.	1	i.	T.		đ.	144	2.8	17			T,	4		F,		
2				20				4	- 1	2	-			Ľ		1		H.	R N			2.2	11.	Ľ	Ω	T,				18	
10	2			10	2		1				÷.,	Н.			1	2		4	1	-						1	3			1	
11	X		s 🔁	22	18	1	58					Q.		Te		10	9	Чų	1	H.	н,	24	H	5	í.	Ŧ	-0	3	2	Ť	8
12	Ľ.			-		35				쾻	1	d.		F		3	E.	1	â				11	Ũ	R				G	E	
13	t		100			OF						ь-		.				5	ł.					17		-			꺍	1	4
14	i.	r H		H		31	R							L.					1	₹.	1	-17		B	a					4	
14	P	H			2		-4							þ	- FRE	L.				-			-	8			믤	H	ţ.	1	5
16	2		28	震	iii i	19.24	-1		H					h		4		4	q	2											k
17	2		10	65		1.0				í.	81	1	bir	Ľ.			1	165		-10				÷				R,	11	6Ē	T
8L	4			2				21				12	<u>, </u>	L			Ě.								÷,				١.	۲	
-	2	- F		罴	24									P	-		14						5		2	Ľ,	4	3	4	1	
	Ē	4.				1. I.			E.	1				E	£)		1				\mathbb{C}^{1}	1.12		E	4	ž			ų,		8
	2				ন					H							а,	4	ġ,			۲.,		2		1		Å,		÷.	
- 3										Ìl.				t.	2.5	E	A		3	1	1			쁥	3	ť.		•		E	ĥ.
20		- 17		4.1	P.	$\mathbb{N}_{\mathbb{P}}$	4		1					١.	2.4	7	ß.		4	11	-			-		1				1	÷.
21				-	1				ni:		i.c		111	Ľ	-		R.	E.		F	-	22		-	Z.	r	H		1	ł.	ź.
22		- Pi		5	4	24	4		1	4						2	2	4	2					Č.				-	ļ	Ţ.	
	1	12	14			-	14	24		5				F	- 6		Þ	- fe		1		<u>д</u> .,		Ã				4	宇	1	
24	F			4	ų.	34			-1							y							44			÷,	÷,		ŧ,	ł	
25	N.V.				N	+;		2	4		Ser.			Ę	80 P	-			T			- 3		ż		6	÷		ť	ii:	
27		14	0.00	11	10	331	1.	-			CH.	-	24		35	134	2	-1	CH	1.07		15	25	-	1			t t	E.		
28	-	42		14			4		1. C		2				19					3					a a		C.		ξŗ,		
	£		200		1.20		1 Percent	1.0	1111		Sec. 1		8-21-2m	1.0		100	14	10.00	all have	the same	ALC: NO		and states	10	100	1	1.51	and a local	1.4	100	191

Migration

Pop 1 (no LD) Pop 2 (no LD) p_1r_1 (AB) p_2r_2 (AB) 1:1 mix What is the freq. of AB Observe $\frac{1}{2}(p_1r_1 + p_2r_2)$

Expect $\frac{1}{4} (p_1 + p_2)(r_1 + r_2)$

 $D = \frac{1}{4} (p_1 - p_2)(r_1 - r_2)$ Zero if $p_1 = p_2$ or $r_1 = r_2$

Migration – population admixture

Hitch-hiking

Allele frequencies change at a locus as a result of selection.

As a result, closely linked polymorphisms change in frequency too.

Hitch-hiking generates LD over the whole linked region.

Is important in regions of low recombination.

These are the gene-rich regions – more opportunities for selection.

Hitch-hiking: evidence from Drosophila

Rate of recombination

An example of hitch-hiking in man.

The Morpheus gene family – function unknown – found in a class of segmental duplications.

20x normal rate of amino acid substitution.

Non synonymous substitution rate > synonymous.

Sequence alignment of two human copies of morpheus gene family.

So what?

Deleterious SNPs at a high frequency are likely to be of interest.

One way they may rise in frequency is through hitch-hiking.

Therefore – look for footprints of hitch-hiking:

High LD / low recombination / gene rich regions Lower heterozygosity and freq. of neutral SNPs Higher heterozygosity and freq. of nsSNPs

Plotting and Modelling LD

 $E(\Delta^2) = 1/(1+4N_e\theta)$

$E(D') = L + (H-L)(1-\theta)^t$

Haplotypes

Methods of determining phase:

is AaBB:

<u>AB, ab</u>

or

<u>Ab, aB</u>

Pedigree	CEPH families
Sequencing	short range
Clarke Algorithm	easy to understand
EM	much software - snphap
Evolutionary metho	ods Phase